--- base_model: sentence-transformers/all-MiniLM-L6-v2 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: be an absolute thrill to read when:Having said that, this must be an absolute thrill to read when you're nine or ten - text: market followed classical economic laws:Levi describes how the market followed classical economic laws - text: This fantasy will certainly hit:This fantasy will certainly hit the mark for anyone who enjoys the genre - text: a bit of brutal reality and a rape:There is quite a bit of brutal reality and a rape too terrible to even think about, but Val McDermid has created characters and a story that I just couldn't put down - text: Kingston is no Steinem:Kingston is no Steinem and doesn't suggest that a woman needs a man like a fish needs a bicycle (though she is unmarried) inference: false model-index: - name: SetFit Polarity Model with sentence-transformers/all-MiniLM-L6-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.7142857142857143 name: Accuracy --- # SetFit Polarity Model with sentence-transformers/all-MiniLM-L6-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. Use a SetFit model to filter these possible aspect span candidates. 3. **Use this SetFit model to classify the filtered aspect span candidates.** ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** en_core_web_lg - **SetFitABSA Aspect Model:** [omymble/setfit-absa-books-aspect](https://huggingface.co/omymble/setfit-absa-books-aspect) - **SetFitABSA Polarity Model:** [omymble/setfit-absa-books-polarity](https://huggingface.co/omymble/setfit-absa-books-polarity) - **Maximum Sequence Length:** 256 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | neutral | | | positive | | | negative | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.7143 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import AbsaModel # Download from the 🤗 Hub model = AbsaModel.from_pretrained( "omymble/setfit-absa-books-aspect", "omymble/setfit-absa-books-polarity", ) # Run inference preds = model("The food was great, but the venue is just way too busy.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 9 | 30.2105 | 84 | | Label | Training Sample Count | |:---------|:----------------------| | negative | 6 | | neutral | 42 | | positive | 9 | ### Training Hyperparameters - batch_size: (256, 256) - num_epochs: (2, 2) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: True - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-----:|:----:|:-------------:|:---------------:| | 0.125 | 1 | 0.3786 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - spaCy: 3.7.4 - Transformers: 4.39.0 - PyTorch: 2.3.1+cu121 - Datasets: 2.20.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```