omymble commited on
Commit
cc23f33
·
verified ·
1 Parent(s): c5cae6d

Add SetFit ABSA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-small-en-v1.5
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - absa
10
+ - sentence-transformers
11
+ - text-classification
12
+ - generated_from_setfit_trainer
13
+ widget:
14
+ - text: mention the unaccommodating managers, the overall:From the terrible service,
15
+ to the bland food, not to mention the unaccommodating managers, the overall experience
16
+ was horrible.
17
+ - text: 'fish dishes and soups.:An oasis of refinement: Food, though somewhat uneven,
18
+ often reaches the pinnacles of new American fine cuisine - chef''s passion (and
19
+ kitchen''s precise execution) is most evident in the fish dishes and soups.'
20
+ - text: 'minutes past our reservation and the maitre:Service is highly refined: our
21
+ seating was delayed 35 minutes past our reservation and the maitre d'' apologized
22
+ and regularly kept us apprised of progress.'
23
+ - text: seated at a table in a corridor:The last time I went we were seated at a table
24
+ in a corridor next to the kitchen.
25
+ - text: love wine and cheese and delicious french:If you love wine and cheese and
26
+ delicious french fare, you'll love Artisanal!
27
+ inference: false
28
+ ---
29
+
30
+ # SetFit Polarity Model with BAAI/bge-small-en-v1.5
31
+
32
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
33
+
34
+ The model has been trained using an efficient few-shot learning technique that involves:
35
+
36
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
37
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
38
+
39
+ This model was trained within the context of a larger system for ABSA, which looks like so:
40
+
41
+ 1. Use a spaCy model to select possible aspect span candidates.
42
+ 2. Use a SetFit model to filter these possible aspect span candidates.
43
+ 3. **Use this SetFit model to classify the filtered aspect span candidates.**
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** SetFit
49
+ - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
50
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
51
+ - **spaCy Model:** en_core_web_lg
52
+ - **SetFitABSA Aspect Model:** [omymble/train-eval-bge-small-aspect](https://huggingface.co/omymble/train-eval-bge-small-aspect)
53
+ - **SetFitABSA Polarity Model:** [omymble/train-eval-bge-small-polarity](https://huggingface.co/omymble/train-eval-bge-small-polarity)
54
+ - **Maximum Sequence Length:** 512 tokens
55
+ - **Number of Classes:** 4 classes
56
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
57
+ <!-- - **Language:** Unknown -->
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
63
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
64
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
65
+
66
+ ### Model Labels
67
+ | Label | Examples |
68
+ |:---------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
69
+ | negative | <ul><li>'But the staff was so horrible:But the staff was so horrible to us.'</li><li>', forgot our toast, left out:They did not have mayonnaise, forgot our toast, left out ingredients (ie cheese in an omelet), below hot temperatures and the bacon was so over cooked it crumbled on the plate when you touched it.'</li><li>'did not have mayonnaise, forgot our:They did not have mayonnaise, forgot our toast, left out ingredients (ie cheese in an omelet), below hot temperatures and the bacon was so over cooked it crumbled on the plate when you touched it.'</li></ul> |
70
+ | positive | <ul><li>"factor was the food, which was:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"The food is uniformly exceptional:The food is uniformly exceptional, with a very capable kitchen which will proudly whip up whatever you feel like eating, whether it's on the menu or not."</li><li>"a very capable kitchen which will proudly:The food is uniformly exceptional, with a very capable kitchen which will proudly whip up whatever you feel like eating, whether it's on the menu or not."</li></ul> |
71
+ | neutral | <ul><li>"'s on the menu or not.:The food is uniformly exceptional, with a very capable kitchen which will proudly whip up whatever you feel like eating, whether it's on the menu or not."</li><li>'to sample both meats).:Our agreed favorite is the orrechiete with sausage and chicken (usually the waiters are kind enough to split the dish in half so you get to sample both meats).'</li><li>'to split the dish in half so:Our agreed favorite is the orrechiete with sausage and chicken (usually the waiters are kind enough to split the dish in half so you get to sample both meats).'</li></ul> |
72
+ | conflict | <ul><li>'The food was delicious but:The food was delicious but do not come here on a empty stomach.'</li><li>"The service varys from day:The service varys from day to day- sometimes they're very nice, and sometimes not."</li></ul> |
73
+
74
+ ## Uses
75
+
76
+ ### Direct Use for Inference
77
+
78
+ First install the SetFit library:
79
+
80
+ ```bash
81
+ pip install setfit
82
+ ```
83
+
84
+ Then you can load this model and run inference.
85
+
86
+ ```python
87
+ from setfit import AbsaModel
88
+
89
+ # Download from the 🤗 Hub
90
+ model = AbsaModel.from_pretrained(
91
+ "omymble/train-eval-bge-small-aspect",
92
+ "omymble/train-eval-bge-small-polarity",
93
+ )
94
+ # Run inference
95
+ preds = model("The food was great, but the venue is just way too busy.")
96
+ ```
97
+
98
+ <!--
99
+ ### Downstream Use
100
+
101
+ *List how someone could finetune this model on their own dataset.*
102
+ -->
103
+
104
+ <!--
105
+ ### Out-of-Scope Use
106
+
107
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
108
+ -->
109
+
110
+ <!--
111
+ ## Bias, Risks and Limitations
112
+
113
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
114
+ -->
115
+
116
+ <!--
117
+ ### Recommendations
118
+
119
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
120
+ -->
121
+
122
+ ## Training Details
123
+
124
+ ### Training Set Metrics
125
+ | Training set | Min | Median | Max |
126
+ |:-------------|:----|:--------|:----|
127
+ | Word count | 6 | 21.3594 | 43 |
128
+
129
+ | Label | Training Sample Count |
130
+ |:---------|:----------------------|
131
+ | conflict | 2 |
132
+ | negative | 19 |
133
+ | neutral | 25 |
134
+ | positive | 82 |
135
+
136
+ ### Training Hyperparameters
137
+ - batch_size: (128, 128)
138
+ - num_epochs: (1, 16)
139
+ - max_steps: -1
140
+ - sampling_strategy: oversampling
141
+ - body_learning_rate: (2e-05, 1e-05)
142
+ - head_learning_rate: 0.01
143
+ - loss: CosineSimilarityLoss
144
+ - distance_metric: cosine_distance
145
+ - margin: 0.25
146
+ - end_to_end: False
147
+ - use_amp: True
148
+ - warmup_proportion: 0.1
149
+ - seed: 42
150
+ - eval_max_steps: -1
151
+ - load_best_model_at_end: True
152
+
153
+ ### Training Results
154
+ | Epoch | Step | Training Loss | Validation Loss |
155
+ |:----------:|:------:|:-------------:|:---------------:|
156
+ | 0.0147 | 1 | 0.2403 | - |
157
+ | **0.7353** | **50** | **0.0846** | **0.2033** |
158
+
159
+ * The bold row denotes the saved checkpoint.
160
+ ### Framework Versions
161
+ - Python: 3.10.12
162
+ - SetFit: 1.0.3
163
+ - Sentence Transformers: 3.0.1
164
+ - spaCy: 3.7.4
165
+ - Transformers: 4.39.0
166
+ - PyTorch: 2.3.1+cu121
167
+ - Datasets: 2.20.0
168
+ - Tokenizers: 0.15.2
169
+
170
+ ## Citation
171
+
172
+ ### BibTeX
173
+ ```bibtex
174
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
175
+ doi = {10.48550/ARXIV.2209.11055},
176
+ url = {https://arxiv.org/abs/2209.11055},
177
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
178
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
179
+ title = {Efficient Few-Shot Learning Without Prompts},
180
+ publisher = {arXiv},
181
+ year = {2022},
182
+ copyright = {Creative Commons Attribution 4.0 International}
183
+ }
184
+ ```
185
+
186
+ <!--
187
+ ## Glossary
188
+
189
+ *Clearly define terms in order to be accessible across audiences.*
190
+ -->
191
+
192
+ <!--
193
+ ## Model Card Authors
194
+
195
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
196
+ -->
197
+
198
+ <!--
199
+ ## Model Card Contact
200
+
201
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
202
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "models/step_50",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.39.0",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.0",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "conflict",
5
+ "negative",
6
+ "neutral",
7
+ "positive"
8
+ ],
9
+ "spacy_model": "en_core_web_lg",
10
+ "span_context": 3
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cacce6c813a90865e8cef6b99f15f0d83a46723b56105579a281cc1908d036b1
3
+ size 133462128
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d49cb53046ccd504f45cd0123a3136638555eca468344988b2edad2968192f65
3
+ size 13271
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff