--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - f1 model-index: - name: deberta-disaster-tweet-recognizer results: [] --- # Deberta Disaster Tweet Recognizer This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4104 - F1: 0.8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 191 | 0.4159 | 0.7894 | | No log | 2.0 | 382 | 0.3845 | 0.7973 | | 0.4497 | 3.0 | 573 | 0.3952 | 0.8016 | | 0.4497 | 4.0 | 764 | 0.4104 | 0.8 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2