onionLad commited on
Commit
62a5aa3
1 Parent(s): da7d9fa

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -11
README.md CHANGED
@@ -1,5 +1,4 @@
1
  ---
2
- license: mit
3
  tags:
4
  - generated_from_trainer
5
  metrics:
@@ -17,13 +16,13 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  # medlid-identify
19
 
20
- This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.1248
23
- - Precision: 0.4410
24
- - Recall: 0.4209
25
- - F1: 0.4307
26
- - Accuracy: 0.9541
27
 
28
  ## Model description
29
 
@@ -54,10 +53,10 @@ The following hyperparameters were used during training:
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
- | No log | 1.0 | 381 | 0.1297 | 0.3898 | 0.3032 | 0.3411 | 0.9525 |
58
- | 0.1774 | 2.0 | 762 | 0.1191 | 0.4485 | 0.3489 | 0.3925 | 0.9551 |
59
- | 0.1177 | 3.0 | 1143 | 0.1216 | 0.4341 | 0.4209 | 0.4274 | 0.9544 |
60
- | 0.0974 | 4.0 | 1524 | 0.1248 | 0.4410 | 0.4209 | 0.4307 | 0.9541 |
61
 
62
 
63
  ### Framework versions
 
1
  ---
 
2
  tags:
3
  - generated_from_trainer
4
  metrics:
 
16
 
17
  # medlid-identify
18
 
19
+ This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on the None dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.1617
22
+ - Precision: 0.4085
23
+ - Recall: 0.4551
24
+ - F1: 0.4305
25
+ - Accuracy: 0.9452
26
 
27
  ## Model description
28
 
 
53
 
54
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
55
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
56
+ | No log | 1.0 | 381 | 0.1447 | 0.3867 | 0.2215 | 0.2817 | 0.9440 |
57
+ | 0.1714 | 2.0 | 762 | 0.1410 | 0.3937 | 0.4513 | 0.4206 | 0.9457 |
58
+ | 0.107 | 3.0 | 1143 | 0.1487 | 0.4061 | 0.4347 | 0.4199 | 0.9456 |
59
+ | 0.0702 | 4.0 | 1524 | 0.1617 | 0.4085 | 0.4551 | 0.4305 | 0.9452 |
60
 
61
 
62
  ### Framework versions