onizukal's picture
End of training
d88616a verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Boya1_3Class_RMSprop_1-e5_20Epoch_Beit-base-patch16_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8222402597402597

Boya1_3Class_RMSprop_1-e5_20Epoch_Beit-base-patch16_fold3

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8476
  • Accuracy: 0.8222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4509 1.0 923 0.4494 0.8149
0.3482 2.0 1846 0.4215 0.8328
0.2766 3.0 2769 0.4845 0.8241
0.1282 4.0 3692 0.6763 0.8333
0.0823 5.0 4615 0.8609 0.8252
0.2362 6.0 5538 1.1571 0.8163
0.0242 7.0 6461 1.3157 0.8203
0.0078 8.0 7384 1.5067 0.8063
0.0045 9.0 8307 1.5694 0.8182
0.0161 10.0 9230 1.6636 0.8168
0.005 11.0 10153 1.7056 0.8185
0.0057 12.0 11076 1.6400 0.8222
0.0001 13.0 11999 1.7600 0.8258
0.0671 14.0 12922 1.8091 0.8241
0.0041 15.0 13845 1.8050 0.8225
0.0 16.0 14768 1.8120 0.8222
0.0556 17.0 15691 1.8242 0.8212
0.0 18.0 16614 1.8578 0.8214
0.0 19.0 17537 1.8441 0.8217
0.0099 20.0 18460 1.8476 0.8222

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1