--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.6532717893021993 --- # Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold1 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 3.0645 - Accuracy: 0.6533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1014 | 1.0 | 924 | 1.1155 | 0.6131 | | 0.917 | 2.0 | 1848 | 1.0767 | 0.6242 | | 0.7533 | 3.0 | 2772 | 1.0565 | 0.6473 | | 0.493 | 4.0 | 3696 | 1.1952 | 0.6530 | | 0.482 | 5.0 | 4620 | 1.3688 | 0.6473 | | 0.1989 | 6.0 | 5544 | 1.6284 | 0.6435 | | 0.1622 | 7.0 | 6468 | 2.0114 | 0.6373 | | 0.0666 | 8.0 | 7392 | 2.2124 | 0.6541 | | 0.0417 | 9.0 | 8316 | 2.4424 | 0.6389 | | 0.0196 | 10.0 | 9240 | 2.5614 | 0.6397 | | 0.0323 | 11.0 | 10164 | 2.8070 | 0.6443 | | 0.0014 | 12.0 | 11088 | 2.8503 | 0.6506 | | 0.001 | 13.0 | 12012 | 2.8885 | 0.6497 | | 0.0706 | 14.0 | 12936 | 3.0224 | 0.6462 | | 0.0003 | 15.0 | 13860 | 3.0064 | 0.6465 | | 0.0013 | 16.0 | 14784 | 3.0115 | 0.6552 | | 0.0316 | 17.0 | 15708 | 3.0514 | 0.6563 | | 0.0002 | 18.0 | 16632 | 3.0348 | 0.6568 | | 0.0 | 19.0 | 17556 | 3.0737 | 0.6508 | | 0.0494 | 20.0 | 18480 | 3.0645 | 0.6533 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1