onizukal's picture
End of training
54a40c9 verified
|
raw
history blame
3.04 kB
metadata
license: apache-2.0
base_model: microsoft/swin-large-patch4-window7-224-in22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Boya2_SGD_1e3_20Epoch_Swin-large-224_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.43978052126200273

Boya2_SGD_1e3_20Epoch_Swin-large-224_fold1

This model is a fine-tuned version of microsoft/swin-large-patch4-window7-224-in22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7177
  • Accuracy: 0.4398

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.5254 1.0 914 2.5193 0.2337
2.2335 2.0 1828 2.2973 0.2768
2.1501 3.0 2742 2.1851 0.2985
2.0837 4.0 3656 2.0892 0.3210
2.023 5.0 4570 2.0285 0.3427
2.1197 6.0 5484 1.9778 0.3567
1.8735 7.0 6398 1.9315 0.3712
1.9425 8.0 7312 1.8942 0.3855
1.7959 9.0 8226 1.8616 0.3975
1.8811 10.0 9140 1.8352 0.4102
1.7687 11.0 10054 1.8101 0.4129
1.745 12.0 10968 1.7884 0.4184
1.6926 13.0 11882 1.7712 0.4241
1.8703 14.0 12796 1.7556 0.4285
1.799 15.0 13710 1.7425 0.4321
1.7167 16.0 14624 1.7343 0.4337
1.8017 17.0 15538 1.7266 0.4362
1.7314 18.0 16452 1.7220 0.4387
1.8866 19.0 17366 1.7190 0.4398
1.8724 20.0 18280 1.7177 0.4398

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.13.2