File size: 3,037 Bytes
158458a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: apache-2.0
base_model: microsoft/swin-large-patch4-window7-224-in22k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Boya2_SGD_1e3_20Epoch_Swin-large-224_fold2
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.46242142661929486
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Boya2_SGD_1e3_20Epoch_Swin-large-224_fold2

This model is a fine-tuned version of [microsoft/swin-large-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-large-patch4-window7-224-in22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7316
- Accuracy: 0.4624

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 2.613         | 1.0   | 913   | 2.5089          | 0.2774   |
| 2.2378        | 2.0   | 1826  | 2.3352          | 0.2938   |
| 2.1303        | 3.0   | 2739  | 2.2226          | 0.3184   |
| 2.0563        | 4.0   | 3652  | 2.1385          | 0.3506   |
| 2.1322        | 5.0   | 4565  | 2.0717          | 0.3758   |
| 2.004         | 6.0   | 5478  | 2.0113          | 0.3955   |
| 2.079         | 7.0   | 6391  | 1.9666          | 0.4130   |
| 1.78          | 8.0   | 7304  | 1.9230          | 0.4225   |
| 1.7925        | 9.0   | 8217  | 1.8877          | 0.4354   |
| 1.9366        | 10.0  | 9130  | 1.8567          | 0.4403   |
| 1.5845        | 11.0  | 10043 | 1.8338          | 0.4458   |
| 1.6846        | 12.0  | 10956 | 1.8079          | 0.4520   |
| 1.7316        | 13.0  | 11869 | 1.7920          | 0.4545   |
| 1.6397        | 14.0  | 12782 | 1.7737          | 0.4600   |
| 1.8114        | 15.0  | 13695 | 1.7580          | 0.4605   |
| 1.5862        | 16.0  | 14608 | 1.7502          | 0.4621   |
| 1.8464        | 17.0  | 15521 | 1.7422          | 0.4641   |
| 1.8008        | 18.0  | 16434 | 1.7370          | 0.4627   |
| 1.719         | 19.0  | 17347 | 1.7333          | 0.4632   |
| 1.5652        | 20.0  | 18260 | 1.7316          | 0.4624   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.21.0
- Tokenizers 0.13.2