File size: 3,036 Bytes
48c2c01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: apache-2.0
base_model: microsoft/swin-large-patch4-window7-224-in22k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Boya2_SGD_1e3_20Epoch_Swin-large-224_fold3
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.4703308722996992
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Boya2_SGD_1e3_20Epoch_Swin-large-224_fold3

This model is a fine-tuned version of [microsoft/swin-large-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-large-patch4-window7-224-in22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7253
- Accuracy: 0.4703

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 2.4987        | 1.0   | 913   | 2.4779          | 0.2773   |
| 2.2499        | 2.0   | 1826  | 2.3076          | 0.2986   |
| 2.1231        | 3.0   | 2739  | 2.2022          | 0.3325   |
| 2.1706        | 4.0   | 3652  | 2.1236          | 0.3672   |
| 2.0969        | 5.0   | 4565  | 2.0581          | 0.3940   |
| 1.9524        | 6.0   | 5478  | 2.0029          | 0.4085   |
| 1.9868        | 7.0   | 6391  | 1.9548          | 0.4208   |
| 1.9729        | 8.0   | 7304  | 1.9129          | 0.4293   |
| 1.9817        | 9.0   | 8217  | 1.8827          | 0.4331   |
| 1.9117        | 10.0  | 9130  | 1.8505          | 0.4430   |
| 1.8805        | 11.0  | 10043 | 1.8244          | 0.4482   |
| 1.8198        | 12.0  | 10956 | 1.8053          | 0.4528   |
| 1.7002        | 13.0  | 11869 | 1.7829          | 0.4558   |
| 1.811         | 14.0  | 12782 | 1.7721          | 0.4602   |
| 1.8637        | 15.0  | 13695 | 1.7553          | 0.4602   |
| 1.8566        | 16.0  | 14608 | 1.7454          | 0.4654   |
| 1.742         | 17.0  | 15521 | 1.7350          | 0.4665   |
| 1.692         | 18.0  | 16434 | 1.7303          | 0.4695   |
| 1.8241        | 19.0  | 17347 | 1.7261          | 0.4695   |
| 1.8203        | 20.0  | 18260 | 1.7253          | 0.4703   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.21.0
- Tokenizers 0.13.2