End of training
Browse files
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/swin-large-patch4-window7-224-in22k
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: Boya2_SGD_1e3_20Epoch_Swin-large-224_fold3
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: test
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.4703308722996992
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# Boya2_SGD_1e3_20Epoch_Swin-large-224_fold3
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [microsoft/swin-large-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-large-patch4-window7-224-in22k) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.7253
|
36 |
+
- Accuracy: 0.4703
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.001
|
56 |
+
- train_batch_size: 16
|
57 |
+
- eval_batch_size: 16
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 20
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
68 |
+
| 2.4987 | 1.0 | 913 | 2.4779 | 0.2773 |
|
69 |
+
| 2.2499 | 2.0 | 1826 | 2.3076 | 0.2986 |
|
70 |
+
| 2.1231 | 3.0 | 2739 | 2.2022 | 0.3325 |
|
71 |
+
| 2.1706 | 4.0 | 3652 | 2.1236 | 0.3672 |
|
72 |
+
| 2.0969 | 5.0 | 4565 | 2.0581 | 0.3940 |
|
73 |
+
| 1.9524 | 6.0 | 5478 | 2.0029 | 0.4085 |
|
74 |
+
| 1.9868 | 7.0 | 6391 | 1.9548 | 0.4208 |
|
75 |
+
| 1.9729 | 8.0 | 7304 | 1.9129 | 0.4293 |
|
76 |
+
| 1.9817 | 9.0 | 8217 | 1.8827 | 0.4331 |
|
77 |
+
| 1.9117 | 10.0 | 9130 | 1.8505 | 0.4430 |
|
78 |
+
| 1.8805 | 11.0 | 10043 | 1.8244 | 0.4482 |
|
79 |
+
| 1.8198 | 12.0 | 10956 | 1.8053 | 0.4528 |
|
80 |
+
| 1.7002 | 13.0 | 11869 | 1.7829 | 0.4558 |
|
81 |
+
| 1.811 | 14.0 | 12782 | 1.7721 | 0.4602 |
|
82 |
+
| 1.8637 | 15.0 | 13695 | 1.7553 | 0.4602 |
|
83 |
+
| 1.8566 | 16.0 | 14608 | 1.7454 | 0.4654 |
|
84 |
+
| 1.742 | 17.0 | 15521 | 1.7350 | 0.4665 |
|
85 |
+
| 1.692 | 18.0 | 16434 | 1.7303 | 0.4695 |
|
86 |
+
| 1.8241 | 19.0 | 17347 | 1.7261 | 0.4695 |
|
87 |
+
| 1.8203 | 20.0 | 18260 | 1.7253 | 0.4703 |
|
88 |
+
|
89 |
+
|
90 |
+
### Framework versions
|
91 |
+
|
92 |
+
- Transformers 4.32.1
|
93 |
+
- Pytorch 2.1.1+cu121
|
94 |
+
- Datasets 2.21.0
|
95 |
+
- Tokenizers 0.13.2
|