--- base_model: meta-llama/Llama-2-13b-hf tags: - generated_from_trainer model-index: - name: qlora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) # qlora-out This model is a fine-tuned version of [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5407 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 300 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.8973 | 0.03 | 20 | 0.7029 | | 0.6828 | 0.06 | 40 | 0.6521 | | 0.6521 | 0.09 | 60 | 0.6199 | | 0.7857 | 0.11 | 80 | 0.6066 | | 0.6208 | 0.14 | 100 | 0.6063 | | 0.6805 | 0.17 | 120 | 0.5969 | | 0.5928 | 0.2 | 140 | 0.5989 | | 0.715 | 0.23 | 160 | 0.5844 | | 0.5647 | 0.26 | 180 | 0.5979 | | 0.6778 | 0.29 | 200 | 0.5889 | | 0.5907 | 0.31 | 220 | 0.5772 | | 0.5536 | 0.34 | 240 | 0.5917 | | 0.7422 | 0.37 | 260 | 0.6781 | | 0.6328 | 0.4 | 280 | 0.5785 | | 0.5705 | 0.43 | 300 | 0.5720 | | 0.6124 | 0.46 | 320 | 0.5753 | | 0.4735 | 0.49 | 340 | 0.6203 | | 0.4602 | 0.52 | 360 | 0.5772 | | 0.8571 | 0.54 | 380 | 0.5750 | | 0.5504 | 0.57 | 400 | 0.6040 | | 0.6307 | 0.6 | 420 | 0.5796 | | 0.4782 | 0.63 | 440 | 0.5639 | | 0.4159 | 0.66 | 460 | 0.5689 | | 0.6393 | 0.69 | 480 | 0.5661 | | 0.8243 | 0.72 | 500 | 0.5698 | | 0.4744 | 0.74 | 520 | 0.5536 | | 0.4395 | 0.77 | 540 | 0.5536 | | 0.543 | 0.8 | 560 | 0.5493 | | 0.4451 | 0.83 | 580 | 0.5421 | | 0.5384 | 0.86 | 600 | 0.5467 | | 0.4438 | 0.89 | 620 | 0.5379 | | 0.4168 | 0.92 | 640 | 0.5398 | | 0.469 | 0.94 | 660 | 0.5402 | | 0.6766 | 0.97 | 680 | 0.5407 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1