onuralp commited on
Commit
8a3fa8c
1 Parent(s): 4cbd4f8

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Llama-2-7b-hf
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: qlora-out
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
14
+ # qlora-out
15
+
16
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.6420
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0002
38
+ - train_batch_size: 2
39
+ - eval_batch_size: 2
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 4
42
+ - total_train_batch_size: 8
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: cosine
45
+ - lr_scheduler_warmup_steps: 10
46
+ - num_epochs: 3
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss |
51
+ |:-------------:|:-----:|:----:|:---------------:|
52
+ | 0.9758 | 0.03 | 20 | 0.6870 |
53
+ | 0.7228 | 0.06 | 40 | 0.6791 |
54
+ | 0.6804 | 0.09 | 60 | 0.6613 |
55
+ | 0.8117 | 0.11 | 80 | 0.6360 |
56
+ | 0.6458 | 0.14 | 100 | 0.6335 |
57
+ | 0.7509 | 0.17 | 120 | 0.6245 |
58
+ | 0.6174 | 0.2 | 140 | 0.6313 |
59
+ | 0.7549 | 0.23 | 160 | 0.6180 |
60
+ | 0.6015 | 0.26 | 180 | 0.6167 |
61
+ | 0.716 | 0.29 | 200 | 0.6165 |
62
+ | 0.6304 | 0.31 | 220 | 0.6014 |
63
+ | 0.5781 | 0.34 | 240 | 0.6107 |
64
+ | 0.8 | 0.37 | 260 | 0.5949 |
65
+ | 0.6845 | 0.4 | 280 | 0.5953 |
66
+ | 0.5857 | 0.43 | 300 | 0.5940 |
67
+ | 0.6369 | 0.46 | 320 | 0.5889 |
68
+ | 0.4767 | 0.49 | 340 | 0.5946 |
69
+ | 0.4848 | 0.52 | 360 | 0.5991 |
70
+ | 0.9067 | 0.54 | 380 | 0.5943 |
71
+ | 0.5943 | 0.57 | 400 | 0.5854 |
72
+ | 0.6999 | 0.6 | 420 | 0.5941 |
73
+ | 0.5173 | 0.63 | 440 | 0.5887 |
74
+ | 0.4201 | 0.66 | 460 | 0.5952 |
75
+ | 0.667 | 0.69 | 480 | 0.5802 |
76
+ | 0.8568 | 0.72 | 500 | 0.5922 |
77
+ | 0.515 | 0.74 | 520 | 0.5800 |
78
+ | 0.504 | 0.77 | 540 | 0.5894 |
79
+ | 0.6361 | 0.8 | 560 | 0.5983 |
80
+ | 0.4896 | 0.83 | 580 | 0.5770 |
81
+ | 0.6044 | 0.86 | 600 | 0.5717 |
82
+ | 0.4925 | 0.89 | 620 | 0.5715 |
83
+ | 0.4704 | 0.92 | 640 | 0.5707 |
84
+ | 0.5342 | 0.94 | 660 | 0.5748 |
85
+ | 0.755 | 0.97 | 680 | 0.5673 |
86
+ | 0.6547 | 1.0 | 700 | 0.5721 |
87
+ | 0.6014 | 1.03 | 720 | 0.5892 |
88
+ | 0.4692 | 1.06 | 740 | 0.5981 |
89
+ | 0.407 | 1.09 | 760 | 0.5995 |
90
+ | 0.5351 | 1.12 | 780 | 0.5948 |
91
+ | 0.3004 | 1.14 | 800 | 0.5758 |
92
+ | 0.554 | 1.17 | 820 | 0.5862 |
93
+ | 0.6394 | 1.2 | 840 | 0.5850 |
94
+ | 0.7135 | 1.23 | 860 | 0.5900 |
95
+ | 0.6323 | 1.26 | 880 | 0.5931 |
96
+ | 0.3257 | 1.29 | 900 | 0.5902 |
97
+ | 0.5183 | 1.32 | 920 | 0.5763 |
98
+ | 0.5383 | 1.34 | 940 | 0.5842 |
99
+ | 0.453 | 1.37 | 960 | 0.5878 |
100
+ | 0.5305 | 1.4 | 980 | 0.5975 |
101
+ | 0.4316 | 1.43 | 1000 | 0.5829 |
102
+ | 0.5992 | 1.46 | 1020 | 0.5801 |
103
+ | 0.5043 | 1.49 | 1040 | 0.5731 |
104
+ | 0.4566 | 1.52 | 1060 | 0.5777 |
105
+ | 0.4879 | 1.55 | 1080 | 0.5785 |
106
+ | 0.7149 | 1.57 | 1100 | 0.5727 |
107
+ | 0.4555 | 1.6 | 1120 | 0.5824 |
108
+ | 0.5248 | 1.63 | 1140 | 0.5821 |
109
+ | 0.4981 | 1.66 | 1160 | 0.5711 |
110
+ | 0.5595 | 1.69 | 1180 | 0.5931 |
111
+ | 0.577 | 1.72 | 1200 | 0.5898 |
112
+ | 0.3202 | 1.75 | 1220 | 0.5775 |
113
+ | 0.7182 | 1.77 | 1240 | 0.5800 |
114
+ | 0.5608 | 1.8 | 1260 | 0.5668 |
115
+ | 0.5677 | 1.83 | 1280 | 0.5797 |
116
+ | 0.5046 | 1.86 | 1300 | 0.5725 |
117
+ | 0.5165 | 1.89 | 1320 | 0.5709 |
118
+ | 0.6432 | 1.92 | 1340 | 0.5817 |
119
+ | 0.4973 | 1.95 | 1360 | 0.5695 |
120
+ | 0.2903 | 1.97 | 1380 | 0.5762 |
121
+ | 0.3099 | 2.0 | 1400 | 0.5832 |
122
+ | 0.4383 | 2.03 | 1420 | 0.6773 |
123
+ | 0.287 | 2.06 | 1440 | 0.6324 |
124
+ | 0.3395 | 2.09 | 1460 | 0.6600 |
125
+ | 0.2677 | 2.12 | 1480 | 0.6409 |
126
+ | 0.4145 | 2.15 | 1500 | 0.6259 |
127
+ | 0.2435 | 2.17 | 1520 | 0.6528 |
128
+ | 0.2539 | 2.2 | 1540 | 0.6379 |
129
+ | 0.3619 | 2.23 | 1560 | 0.6402 |
130
+ | 0.3289 | 2.26 | 1580 | 0.6355 |
131
+ | 0.4993 | 2.29 | 1600 | 0.6515 |
132
+ | 0.2705 | 2.32 | 1620 | 0.6357 |
133
+ | 0.4863 | 2.35 | 1640 | 0.6385 |
134
+ | 0.356 | 2.37 | 1660 | 0.6364 |
135
+ | 0.3433 | 2.4 | 1680 | 0.6390 |
136
+ | 0.3215 | 2.43 | 1700 | 0.6325 |
137
+ | 0.4795 | 2.46 | 1720 | 0.6336 |
138
+ | 0.3457 | 2.49 | 1740 | 0.6342 |
139
+ | 0.6864 | 2.52 | 1760 | 0.6435 |
140
+ | 0.3965 | 2.55 | 1780 | 0.6447 |
141
+ | 0.3424 | 2.58 | 1800 | 0.6344 |
142
+ | 0.7203 | 2.6 | 1820 | 0.6385 |
143
+ | 0.6209 | 2.63 | 1840 | 0.6475 |
144
+ | 0.3693 | 2.66 | 1860 | 0.6439 |
145
+ | 0.4004 | 2.69 | 1880 | 0.6410 |
146
+ | 0.3499 | 2.72 | 1900 | 0.6392 |
147
+ | 0.4691 | 2.75 | 1920 | 0.6396 |
148
+ | 0.2775 | 2.78 | 1940 | 0.6387 |
149
+ | 0.26 | 2.8 | 1960 | 0.6423 |
150
+ | 0.2917 | 2.83 | 1980 | 0.6432 |
151
+ | 0.4461 | 2.86 | 2000 | 0.6414 |
152
+ | 0.4149 | 2.89 | 2020 | 0.6433 |
153
+ | 0.2863 | 2.92 | 2040 | 0.6428 |
154
+ | 0.1832 | 2.95 | 2060 | 0.6424 |
155
+ | 0.5409 | 2.98 | 2080 | 0.6420 |
156
+
157
+
158
+ ### Framework versions
159
+
160
+ - Transformers 4.34.1
161
+ - Pytorch 2.0.1+cu118
162
+ - Datasets 2.14.6
163
+ - Tokenizers 0.14.1
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-2-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "gate_proj",
21
+ "v_proj",
22
+ "q_proj",
23
+ "down_proj",
24
+ "k_proj",
25
+ "up_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78e9457448b5e801fdc2e9c8428f40a98db53e104fdae6c0391ff361036ed4d1
3
+ size 319977229
checkpoint-1398/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: meta-llama/Llama-2-7b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0.dev0
checkpoint-1398/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-2-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "gate_proj",
21
+ "v_proj",
22
+ "q_proj",
23
+ "down_proj",
24
+ "k_proj",
25
+ "up_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-1398/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff3292cedf441038efba84acacdfa37bab942efd7107d194b5f92c00b3339da0
3
+ size 319977229
checkpoint-1398/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:383eeab158877fdde71dbb12aeb67ab77ca64d235db0055bb08fe6c72075c503
3
+ size 639908613
checkpoint-1398/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84a6bb6962a339d917c288ead1960493402e9b02073b73feedd269e908fcb2df
3
+ size 14575
checkpoint-1398/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b52a0bfc5d50187cdcd52d78d862c8ad66c418b4de30913ccd1cc5a2d78096be
3
+ size 627
checkpoint-1398/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1398/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec169c134980720877e79f395fe6bb950547a52de90d95eec3dd885a9b35107b
3
+ size 4475
checkpoint-2097/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: meta-llama/Llama-2-7b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0.dev0
checkpoint-2097/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-2-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "gate_proj",
21
+ "v_proj",
22
+ "q_proj",
23
+ "down_proj",
24
+ "k_proj",
25
+ "up_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-2097/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78e9457448b5e801fdc2e9c8428f40a98db53e104fdae6c0391ff361036ed4d1
3
+ size 319977229
checkpoint-2097/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edaf418483afa5222f0e82204acccc0ec4a85ecb265a4cfac79c5ce566f082d4
3
+ size 639908613
checkpoint-2097/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:784df19cfd6f9f1fc0863a8e3e5da380453ebd75c36a36d882f33e3850487076
3
+ size 14575
checkpoint-2097/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a935b762d146e0ba040bdbd51d74ba747682110fd097d5a9a6e5a07a69f2430
3
+ size 627
checkpoint-2097/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2097/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec169c134980720877e79f395fe6bb950547a52de90d95eec3dd885a9b35107b
3
+ size 4475
checkpoint-699/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: meta-llama/Llama-2-7b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0.dev0
checkpoint-699/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-2-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "gate_proj",
21
+ "v_proj",
22
+ "q_proj",
23
+ "down_proj",
24
+ "k_proj",
25
+ "up_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-699/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae3b34fb3fe30141e24e9b02d3e4f4285d4609efee60c513dccd3cddd9dbe6f2
3
+ size 319977229
checkpoint-699/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10bf9160c46e9d64e61b5e0143580f8df74fe8c7cd99de74b59f2e3b6d2d5a44
3
+ size 639908613
checkpoint-699/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:276c8e7cdcca392e11c241b87343dfe60d9640f48681eb9dbd91c73fd2ad7991
3
+ size 14575
checkpoint-699/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c76c99afa3e26a9381596d1682e0d530348cdb6e7c2002297a885960e9c8d103
3
+ size 627
checkpoint-699/trainer_state.json ADDED
@@ -0,0 +1,4485 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 20,
6
+ "global_step": 699,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 2e-05,
14
+ "loss": 3.8527,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 4e-05,
20
+ "loss": 2.357,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.0,
25
+ "learning_rate": 6e-05,
26
+ "loss": 1.6448,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 8e-05,
32
+ "loss": 3.7495,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 0.0001,
38
+ "loss": 3.6283,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 0.00012,
44
+ "loss": 2.8617,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 0.00014,
50
+ "loss": 2.1554,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 0.00016,
56
+ "loss": 1.5715,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.01,
61
+ "learning_rate": 0.00018,
62
+ "loss": 1.162,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.01,
67
+ "learning_rate": 0.0002,
68
+ "loss": 0.9593,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 0.00019999988670134103,
74
+ "loss": 0.8023,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 0.00019999954680562074,
80
+ "loss": 0.9134,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 0.00019999898031360943,
86
+ "loss": 0.8533,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "learning_rate": 0.00019999818722659068,
92
+ "loss": 0.792,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.02,
97
+ "learning_rate": 0.00019999716754636165,
98
+ "loss": 0.9903,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.02,
103
+ "learning_rate": 0.00019999592127523287,
104
+ "loss": 0.7565,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.02,
109
+ "learning_rate": 0.0001999944484160284,
110
+ "loss": 0.8171,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 0.00019999274897208565,
116
+ "loss": 0.9344,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.03,
121
+ "learning_rate": 0.00019999082294725555,
122
+ "loss": 0.8733,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.03,
127
+ "learning_rate": 0.00019998867034590241,
128
+ "loss": 0.9758,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.03,
133
+ "eval_loss": 0.6869800090789795,
134
+ "eval_runtime": 29.3692,
135
+ "eval_samples_per_second": 55.466,
136
+ "eval_steps_per_second": 27.75,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.03,
141
+ "learning_rate": 0.00019998629117290396,
142
+ "loss": 0.8391,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.03,
147
+ "learning_rate": 0.0001999836854336514,
148
+ "loss": 1.032,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.03,
153
+ "learning_rate": 0.00019998085313404916,
154
+ "loss": 0.9099,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.03,
159
+ "learning_rate": 0.00019997779428051522,
160
+ "loss": 0.8684,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.04,
165
+ "learning_rate": 0.00019997450887998086,
166
+ "loss": 0.9439,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.04,
171
+ "learning_rate": 0.0001999709969398907,
172
+ "loss": 1.0515,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.04,
177
+ "learning_rate": 0.0001999672584682027,
178
+ "loss": 1.1631,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.04,
183
+ "learning_rate": 0.00019996329347338814,
184
+ "loss": 0.7389,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.04,
189
+ "learning_rate": 0.00019995910196443157,
190
+ "loss": 0.6839,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.04,
195
+ "learning_rate": 0.00019995468395083088,
196
+ "loss": 1.0289,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.04,
201
+ "learning_rate": 0.00019995003944259715,
202
+ "loss": 0.9143,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.05,
207
+ "learning_rate": 0.00019994516845025468,
208
+ "loss": 0.95,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 0.05,
213
+ "learning_rate": 0.0001999400709848411,
214
+ "loss": 0.9214,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 0.05,
219
+ "learning_rate": 0.000199934747057907,
220
+ "loss": 0.9471,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 0.05,
225
+ "learning_rate": 0.00019992919668151635,
226
+ "loss": 0.7858,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 0.05,
231
+ "learning_rate": 0.00019992341986824612,
232
+ "loss": 0.6643,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 0.05,
237
+ "learning_rate": 0.00019991741663118642,
238
+ "loss": 0.7344,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 0.05,
243
+ "learning_rate": 0.00019991118698394042,
244
+ "loss": 0.7909,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 0.06,
249
+ "learning_rate": 0.00019990473094062434,
250
+ "loss": 0.7732,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 0.06,
255
+ "learning_rate": 0.00019989804851586743,
256
+ "loss": 0.7228,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.06,
261
+ "eval_loss": 0.6790834069252014,
262
+ "eval_runtime": 29.3451,
263
+ "eval_samples_per_second": 55.512,
264
+ "eval_steps_per_second": 27.773,
265
+ "step": 40
266
+ },
267
+ {
268
+ "epoch": 0.06,
269
+ "learning_rate": 0.00019989113972481183,
270
+ "loss": 0.8713,
271
+ "step": 41
272
+ },
273
+ {
274
+ "epoch": 0.06,
275
+ "learning_rate": 0.0001998840045831127,
276
+ "loss": 0.6862,
277
+ "step": 42
278
+ },
279
+ {
280
+ "epoch": 0.06,
281
+ "learning_rate": 0.00019987664310693805,
282
+ "loss": 0.7524,
283
+ "step": 43
284
+ },
285
+ {
286
+ "epoch": 0.06,
287
+ "learning_rate": 0.00019986905531296884,
288
+ "loss": 0.7405,
289
+ "step": 44
290
+ },
291
+ {
292
+ "epoch": 0.06,
293
+ "learning_rate": 0.0001998612412183988,
294
+ "loss": 0.7113,
295
+ "step": 45
296
+ },
297
+ {
298
+ "epoch": 0.07,
299
+ "learning_rate": 0.00019985320084093443,
300
+ "loss": 0.7264,
301
+ "step": 46
302
+ },
303
+ {
304
+ "epoch": 0.07,
305
+ "learning_rate": 0.00019984493419879503,
306
+ "loss": 0.717,
307
+ "step": 47
308
+ },
309
+ {
310
+ "epoch": 0.07,
311
+ "learning_rate": 0.00019983644131071256,
312
+ "loss": 0.9136,
313
+ "step": 48
314
+ },
315
+ {
316
+ "epoch": 0.07,
317
+ "learning_rate": 0.00019982772219593172,
318
+ "loss": 0.662,
319
+ "step": 49
320
+ },
321
+ {
322
+ "epoch": 0.07,
323
+ "learning_rate": 0.00019981877687420975,
324
+ "loss": 0.6811,
325
+ "step": 50
326
+ },
327
+ {
328
+ "epoch": 0.07,
329
+ "learning_rate": 0.00019980960536581654,
330
+ "loss": 0.7089,
331
+ "step": 51
332
+ },
333
+ {
334
+ "epoch": 0.07,
335
+ "learning_rate": 0.0001998002076915345,
336
+ "loss": 0.774,
337
+ "step": 52
338
+ },
339
+ {
340
+ "epoch": 0.08,
341
+ "learning_rate": 0.00019979058387265843,
342
+ "loss": 0.9975,
343
+ "step": 53
344
+ },
345
+ {
346
+ "epoch": 0.08,
347
+ "learning_rate": 0.0001997807339309957,
348
+ "loss": 0.8504,
349
+ "step": 54
350
+ },
351
+ {
352
+ "epoch": 0.08,
353
+ "learning_rate": 0.00019977065788886602,
354
+ "loss": 0.7098,
355
+ "step": 55
356
+ },
357
+ {
358
+ "epoch": 0.08,
359
+ "learning_rate": 0.0001997603557691014,
360
+ "loss": 0.6549,
361
+ "step": 56
362
+ },
363
+ {
364
+ "epoch": 0.08,
365
+ "learning_rate": 0.00019974982759504625,
366
+ "loss": 0.6731,
367
+ "step": 57
368
+ },
369
+ {
370
+ "epoch": 0.08,
371
+ "learning_rate": 0.000199739073390557,
372
+ "loss": 0.8107,
373
+ "step": 58
374
+ },
375
+ {
376
+ "epoch": 0.08,
377
+ "learning_rate": 0.00019972809318000246,
378
+ "loss": 0.7196,
379
+ "step": 59
380
+ },
381
+ {
382
+ "epoch": 0.09,
383
+ "learning_rate": 0.00019971688698826353,
384
+ "loss": 0.6804,
385
+ "step": 60
386
+ },
387
+ {
388
+ "epoch": 0.09,
389
+ "eval_loss": 0.6613275408744812,
390
+ "eval_runtime": 29.3333,
391
+ "eval_samples_per_second": 55.534,
392
+ "eval_steps_per_second": 27.784,
393
+ "step": 60
394
+ },
395
+ {
396
+ "epoch": 0.09,
397
+ "learning_rate": 0.00019970545484073306,
398
+ "loss": 0.7939,
399
+ "step": 61
400
+ },
401
+ {
402
+ "epoch": 0.09,
403
+ "learning_rate": 0.00019969379676331602,
404
+ "loss": 0.7578,
405
+ "step": 62
406
+ },
407
+ {
408
+ "epoch": 0.09,
409
+ "learning_rate": 0.00019968191278242934,
410
+ "loss": 0.792,
411
+ "step": 63
412
+ },
413
+ {
414
+ "epoch": 0.09,
415
+ "learning_rate": 0.00019966980292500174,
416
+ "loss": 0.9361,
417
+ "step": 64
418
+ },
419
+ {
420
+ "epoch": 0.09,
421
+ "learning_rate": 0.00019965746721847387,
422
+ "loss": 0.7841,
423
+ "step": 65
424
+ },
425
+ {
426
+ "epoch": 0.09,
427
+ "learning_rate": 0.00019964490569079812,
428
+ "loss": 0.7706,
429
+ "step": 66
430
+ },
431
+ {
432
+ "epoch": 0.1,
433
+ "learning_rate": 0.00019963211837043852,
434
+ "loss": 0.8221,
435
+ "step": 67
436
+ },
437
+ {
438
+ "epoch": 0.1,
439
+ "learning_rate": 0.00019961910528637088,
440
+ "loss": 0.6315,
441
+ "step": 68
442
+ },
443
+ {
444
+ "epoch": 0.1,
445
+ "learning_rate": 0.0001996058664680824,
446
+ "loss": 0.6358,
447
+ "step": 69
448
+ },
449
+ {
450
+ "epoch": 0.1,
451
+ "learning_rate": 0.00019959240194557197,
452
+ "loss": 0.7126,
453
+ "step": 70
454
+ },
455
+ {
456
+ "epoch": 0.1,
457
+ "learning_rate": 0.00019957871174934978,
458
+ "loss": 0.5788,
459
+ "step": 71
460
+ },
461
+ {
462
+ "epoch": 0.1,
463
+ "learning_rate": 0.00019956479591043752,
464
+ "loss": 0.7683,
465
+ "step": 72
466
+ },
467
+ {
468
+ "epoch": 0.1,
469
+ "learning_rate": 0.000199550654460368,
470
+ "loss": 0.7092,
471
+ "step": 73
472
+ },
473
+ {
474
+ "epoch": 0.11,
475
+ "learning_rate": 0.00019953628743118546,
476
+ "loss": 0.7995,
477
+ "step": 74
478
+ },
479
+ {
480
+ "epoch": 0.11,
481
+ "learning_rate": 0.00019952169485544516,
482
+ "loss": 0.6204,
483
+ "step": 75
484
+ },
485
+ {
486
+ "epoch": 0.11,
487
+ "learning_rate": 0.00019950687676621352,
488
+ "loss": 0.6226,
489
+ "step": 76
490
+ },
491
+ {
492
+ "epoch": 0.11,
493
+ "learning_rate": 0.0001994918331970679,
494
+ "loss": 0.5133,
495
+ "step": 77
496
+ },
497
+ {
498
+ "epoch": 0.11,
499
+ "learning_rate": 0.0001994765641820966,
500
+ "loss": 0.9482,
501
+ "step": 78
502
+ },
503
+ {
504
+ "epoch": 0.11,
505
+ "learning_rate": 0.00019946106975589884,
506
+ "loss": 0.7825,
507
+ "step": 79
508
+ },
509
+ {
510
+ "epoch": 0.11,
511
+ "learning_rate": 0.00019944534995358458,
512
+ "loss": 0.8117,
513
+ "step": 80
514
+ },
515
+ {
516
+ "epoch": 0.11,
517
+ "eval_loss": 0.6359772682189941,
518
+ "eval_runtime": 29.2458,
519
+ "eval_samples_per_second": 55.7,
520
+ "eval_steps_per_second": 27.867,
521
+ "step": 80
522
+ },
523
+ {
524
+ "epoch": 0.12,
525
+ "learning_rate": 0.00019942940481077446,
526
+ "loss": 0.844,
527
+ "step": 81
528
+ },
529
+ {
530
+ "epoch": 0.12,
531
+ "learning_rate": 0.00019941323436359972,
532
+ "loss": 0.766,
533
+ "step": 82
534
+ },
535
+ {
536
+ "epoch": 0.12,
537
+ "learning_rate": 0.00019939683864870217,
538
+ "loss": 0.7071,
539
+ "step": 83
540
+ },
541
+ {
542
+ "epoch": 0.12,
543
+ "learning_rate": 0.0001993802177032341,
544
+ "loss": 0.7645,
545
+ "step": 84
546
+ },
547
+ {
548
+ "epoch": 0.12,
549
+ "learning_rate": 0.0001993633715648581,
550
+ "loss": 0.9787,
551
+ "step": 85
552
+ },
553
+ {
554
+ "epoch": 0.12,
555
+ "learning_rate": 0.00019934630027174707,
556
+ "loss": 0.6916,
557
+ "step": 86
558
+ },
559
+ {
560
+ "epoch": 0.12,
561
+ "learning_rate": 0.00019932900386258407,
562
+ "loss": 0.6979,
563
+ "step": 87
564
+ },
565
+ {
566
+ "epoch": 0.13,
567
+ "learning_rate": 0.0001993114823765623,
568
+ "loss": 0.688,
569
+ "step": 88
570
+ },
571
+ {
572
+ "epoch": 0.13,
573
+ "learning_rate": 0.00019929373585338508,
574
+ "loss": 0.8155,
575
+ "step": 89
576
+ },
577
+ {
578
+ "epoch": 0.13,
579
+ "learning_rate": 0.00019927576433326544,
580
+ "loss": 0.6204,
581
+ "step": 90
582
+ },
583
+ {
584
+ "epoch": 0.13,
585
+ "learning_rate": 0.0001992575678569264,
586
+ "loss": 0.8641,
587
+ "step": 91
588
+ },
589
+ {
590
+ "epoch": 0.13,
591
+ "learning_rate": 0.0001992391464656007,
592
+ "loss": 0.758,
593
+ "step": 92
594
+ },
595
+ {
596
+ "epoch": 0.13,
597
+ "learning_rate": 0.0001992205002010307,
598
+ "loss": 0.6035,
599
+ "step": 93
600
+ },
601
+ {
602
+ "epoch": 0.13,
603
+ "learning_rate": 0.00019920162910546833,
604
+ "loss": 0.857,
605
+ "step": 94
606
+ },
607
+ {
608
+ "epoch": 0.14,
609
+ "learning_rate": 0.00019918253322167502,
610
+ "loss": 0.6189,
611
+ "step": 95
612
+ },
613
+ {
614
+ "epoch": 0.14,
615
+ "learning_rate": 0.00019916321259292152,
616
+ "loss": 0.8429,
617
+ "step": 96
618
+ },
619
+ {
620
+ "epoch": 0.14,
621
+ "learning_rate": 0.00019914366726298782,
622
+ "loss": 0.9827,
623
+ "step": 97
624
+ },
625
+ {
626
+ "epoch": 0.14,
627
+ "learning_rate": 0.00019912389727616314,
628
+ "loss": 0.9278,
629
+ "step": 98
630
+ },
631
+ {
632
+ "epoch": 0.14,
633
+ "learning_rate": 0.00019910390267724576,
634
+ "loss": 0.6625,
635
+ "step": 99
636
+ },
637
+ {
638
+ "epoch": 0.14,
639
+ "learning_rate": 0.0001990836835115429,
640
+ "loss": 0.6458,
641
+ "step": 100
642
+ },
643
+ {
644
+ "epoch": 0.14,
645
+ "eval_loss": 0.6334865093231201,
646
+ "eval_runtime": 29.3599,
647
+ "eval_samples_per_second": 55.484,
648
+ "eval_steps_per_second": 27.759,
649
+ "step": 100
650
+ },
651
+ {
652
+ "epoch": 0.14,
653
+ "learning_rate": 0.0001990632398248706,
654
+ "loss": 0.6327,
655
+ "step": 101
656
+ },
657
+ {
658
+ "epoch": 0.15,
659
+ "learning_rate": 0.00019904257166355376,
660
+ "loss": 0.719,
661
+ "step": 102
662
+ },
663
+ {
664
+ "epoch": 0.15,
665
+ "learning_rate": 0.00019902167907442583,
666
+ "loss": 0.6946,
667
+ "step": 103
668
+ },
669
+ {
670
+ "epoch": 0.15,
671
+ "learning_rate": 0.00019900056210482892,
672
+ "loss": 0.6667,
673
+ "step": 104
674
+ },
675
+ {
676
+ "epoch": 0.15,
677
+ "learning_rate": 0.00019897922080261345,
678
+ "loss": 0.6793,
679
+ "step": 105
680
+ },
681
+ {
682
+ "epoch": 0.15,
683
+ "learning_rate": 0.0001989576552161383,
684
+ "loss": 0.7095,
685
+ "step": 106
686
+ },
687
+ {
688
+ "epoch": 0.15,
689
+ "learning_rate": 0.00019893586539427048,
690
+ "loss": 0.6903,
691
+ "step": 107
692
+ },
693
+ {
694
+ "epoch": 0.15,
695
+ "learning_rate": 0.0001989138513863851,
696
+ "loss": 0.9088,
697
+ "step": 108
698
+ },
699
+ {
700
+ "epoch": 0.16,
701
+ "learning_rate": 0.0001988916132423654,
702
+ "loss": 0.7673,
703
+ "step": 109
704
+ },
705
+ {
706
+ "epoch": 0.16,
707
+ "learning_rate": 0.00019886915101260234,
708
+ "loss": 0.671,
709
+ "step": 110
710
+ },
711
+ {
712
+ "epoch": 0.16,
713
+ "learning_rate": 0.00019884646474799475,
714
+ "loss": 0.6958,
715
+ "step": 111
716
+ },
717
+ {
718
+ "epoch": 0.16,
719
+ "learning_rate": 0.00019882355449994915,
720
+ "loss": 0.6109,
721
+ "step": 112
722
+ },
723
+ {
724
+ "epoch": 0.16,
725
+ "learning_rate": 0.00019880042032037947,
726
+ "loss": 0.7404,
727
+ "step": 113
728
+ },
729
+ {
730
+ "epoch": 0.16,
731
+ "learning_rate": 0.0001987770622617072,
732
+ "loss": 0.7017,
733
+ "step": 114
734
+ },
735
+ {
736
+ "epoch": 0.16,
737
+ "learning_rate": 0.00019875348037686106,
738
+ "loss": 0.8272,
739
+ "step": 115
740
+ },
741
+ {
742
+ "epoch": 0.17,
743
+ "learning_rate": 0.00019872967471927692,
744
+ "loss": 0.8391,
745
+ "step": 116
746
+ },
747
+ {
748
+ "epoch": 0.17,
749
+ "learning_rate": 0.00019870564534289783,
750
+ "loss": 0.6695,
751
+ "step": 117
752
+ },
753
+ {
754
+ "epoch": 0.17,
755
+ "learning_rate": 0.0001986813923021737,
756
+ "loss": 0.7992,
757
+ "step": 118
758
+ },
759
+ {
760
+ "epoch": 0.17,
761
+ "learning_rate": 0.00019865691565206122,
762
+ "loss": 0.7508,
763
+ "step": 119
764
+ },
765
+ {
766
+ "epoch": 0.17,
767
+ "learning_rate": 0.00019863221544802386,
768
+ "loss": 0.7509,
769
+ "step": 120
770
+ },
771
+ {
772
+ "epoch": 0.17,
773
+ "eval_loss": 0.6245399713516235,
774
+ "eval_runtime": 29.3529,
775
+ "eval_samples_per_second": 55.497,
776
+ "eval_steps_per_second": 27.766,
777
+ "step": 120
778
+ },
779
+ {
780
+ "epoch": 0.17,
781
+ "learning_rate": 0.00019860729174603163,
782
+ "loss": 0.6813,
783
+ "step": 121
784
+ },
785
+ {
786
+ "epoch": 0.17,
787
+ "learning_rate": 0.00019858214460256095,
788
+ "loss": 0.6432,
789
+ "step": 122
790
+ },
791
+ {
792
+ "epoch": 0.18,
793
+ "learning_rate": 0.00019855677407459458,
794
+ "loss": 0.672,
795
+ "step": 123
796
+ },
797
+ {
798
+ "epoch": 0.18,
799
+ "learning_rate": 0.00019853118021962148,
800
+ "loss": 0.7951,
801
+ "step": 124
802
+ },
803
+ {
804
+ "epoch": 0.18,
805
+ "learning_rate": 0.00019850536309563656,
806
+ "loss": 0.7095,
807
+ "step": 125
808
+ },
809
+ {
810
+ "epoch": 0.18,
811
+ "learning_rate": 0.00019847932276114083,
812
+ "loss": 0.6037,
813
+ "step": 126
814
+ },
815
+ {
816
+ "epoch": 0.18,
817
+ "learning_rate": 0.00019845305927514094,
818
+ "loss": 0.5812,
819
+ "step": 127
820
+ },
821
+ {
822
+ "epoch": 0.18,
823
+ "learning_rate": 0.00019842657269714923,
824
+ "loss": 0.6124,
825
+ "step": 128
826
+ },
827
+ {
828
+ "epoch": 0.18,
829
+ "learning_rate": 0.0001983998630871836,
830
+ "loss": 0.6501,
831
+ "step": 129
832
+ },
833
+ {
834
+ "epoch": 0.19,
835
+ "learning_rate": 0.0001983729305057673,
836
+ "loss": 0.9065,
837
+ "step": 130
838
+ },
839
+ {
840
+ "epoch": 0.19,
841
+ "learning_rate": 0.00019834577501392885,
842
+ "loss": 0.8046,
843
+ "step": 131
844
+ },
845
+ {
846
+ "epoch": 0.19,
847
+ "learning_rate": 0.00019831839667320183,
848
+ "loss": 0.904,
849
+ "step": 132
850
+ },
851
+ {
852
+ "epoch": 0.19,
853
+ "learning_rate": 0.00019829079554562487,
854
+ "loss": 0.5364,
855
+ "step": 133
856
+ },
857
+ {
858
+ "epoch": 0.19,
859
+ "learning_rate": 0.0001982629716937414,
860
+ "loss": 0.4704,
861
+ "step": 134
862
+ },
863
+ {
864
+ "epoch": 0.19,
865
+ "learning_rate": 0.00019823492518059946,
866
+ "loss": 0.6457,
867
+ "step": 135
868
+ },
869
+ {
870
+ "epoch": 0.19,
871
+ "learning_rate": 0.00019820665606975175,
872
+ "loss": 0.752,
873
+ "step": 136
874
+ },
875
+ {
876
+ "epoch": 0.2,
877
+ "learning_rate": 0.00019817816442525526,
878
+ "loss": 0.7523,
879
+ "step": 137
880
+ },
881
+ {
882
+ "epoch": 0.2,
883
+ "learning_rate": 0.00019814945031167134,
884
+ "loss": 0.675,
885
+ "step": 138
886
+ },
887
+ {
888
+ "epoch": 0.2,
889
+ "learning_rate": 0.0001981205137940654,
890
+ "loss": 0.7782,
891
+ "step": 139
892
+ },
893
+ {
894
+ "epoch": 0.2,
895
+ "learning_rate": 0.00019809135493800679,
896
+ "loss": 0.6174,
897
+ "step": 140
898
+ },
899
+ {
900
+ "epoch": 0.2,
901
+ "eval_loss": 0.6312826871871948,
902
+ "eval_runtime": 29.36,
903
+ "eval_samples_per_second": 55.484,
904
+ "eval_steps_per_second": 27.759,
905
+ "step": 140
906
+ },
907
+ {
908
+ "epoch": 0.2,
909
+ "learning_rate": 0.00019806197380956874,
910
+ "loss": 0.5355,
911
+ "step": 141
912
+ },
913
+ {
914
+ "epoch": 0.2,
915
+ "learning_rate": 0.00019803237047532802,
916
+ "loss": 0.5741,
917
+ "step": 142
918
+ },
919
+ {
920
+ "epoch": 0.2,
921
+ "learning_rate": 0.00019800254500236503,
922
+ "loss": 0.7357,
923
+ "step": 143
924
+ },
925
+ {
926
+ "epoch": 0.21,
927
+ "learning_rate": 0.00019797249745826353,
928
+ "loss": 0.6641,
929
+ "step": 144
930
+ },
931
+ {
932
+ "epoch": 0.21,
933
+ "learning_rate": 0.0001979422279111104,
934
+ "loss": 0.5884,
935
+ "step": 145
936
+ },
937
+ {
938
+ "epoch": 0.21,
939
+ "learning_rate": 0.00019791173642949564,
940
+ "loss": 0.4902,
941
+ "step": 146
942
+ },
943
+ {
944
+ "epoch": 0.21,
945
+ "learning_rate": 0.00019788102308251212,
946
+ "loss": 0.6585,
947
+ "step": 147
948
+ },
949
+ {
950
+ "epoch": 0.21,
951
+ "learning_rate": 0.00019785008793975548,
952
+ "loss": 0.6445,
953
+ "step": 148
954
+ },
955
+ {
956
+ "epoch": 0.21,
957
+ "learning_rate": 0.00019781893107132393,
958
+ "loss": 0.8865,
959
+ "step": 149
960
+ },
961
+ {
962
+ "epoch": 0.21,
963
+ "learning_rate": 0.00019778755254781807,
964
+ "loss": 0.6996,
965
+ "step": 150
966
+ },
967
+ {
968
+ "epoch": 0.22,
969
+ "learning_rate": 0.00019775595244034077,
970
+ "loss": 0.5696,
971
+ "step": 151
972
+ },
973
+ {
974
+ "epoch": 0.22,
975
+ "learning_rate": 0.00019772413082049713,
976
+ "loss": 0.6353,
977
+ "step": 152
978
+ },
979
+ {
980
+ "epoch": 0.22,
981
+ "learning_rate": 0.00019769208776039397,
982
+ "loss": 0.6547,
983
+ "step": 153
984
+ },
985
+ {
986
+ "epoch": 0.22,
987
+ "learning_rate": 0.00019765982333264006,
988
+ "loss": 1.059,
989
+ "step": 154
990
+ },
991
+ {
992
+ "epoch": 0.22,
993
+ "learning_rate": 0.0001976273376103457,
994
+ "loss": 0.6234,
995
+ "step": 155
996
+ },
997
+ {
998
+ "epoch": 0.22,
999
+ "learning_rate": 0.0001975946306671227,
1000
+ "loss": 0.5276,
1001
+ "step": 156
1002
+ },
1003
+ {
1004
+ "epoch": 0.22,
1005
+ "learning_rate": 0.00019756170257708412,
1006
+ "loss": 0.6942,
1007
+ "step": 157
1008
+ },
1009
+ {
1010
+ "epoch": 0.23,
1011
+ "learning_rate": 0.0001975285534148441,
1012
+ "loss": 0.7216,
1013
+ "step": 158
1014
+ },
1015
+ {
1016
+ "epoch": 0.23,
1017
+ "learning_rate": 0.00019749518325551778,
1018
+ "loss": 0.6563,
1019
+ "step": 159
1020
+ },
1021
+ {
1022
+ "epoch": 0.23,
1023
+ "learning_rate": 0.00019746159217472097,
1024
+ "loss": 0.7549,
1025
+ "step": 160
1026
+ },
1027
+ {
1028
+ "epoch": 0.23,
1029
+ "eval_loss": 0.6180239319801331,
1030
+ "eval_runtime": 29.3051,
1031
+ "eval_samples_per_second": 55.588,
1032
+ "eval_steps_per_second": 27.811,
1033
+ "step": 160
1034
+ },
1035
+ {
1036
+ "epoch": 0.23,
1037
+ "learning_rate": 0.00019742778024857028,
1038
+ "loss": 0.6399,
1039
+ "step": 161
1040
+ },
1041
+ {
1042
+ "epoch": 0.23,
1043
+ "learning_rate": 0.00019739374755368253,
1044
+ "loss": 0.6149,
1045
+ "step": 162
1046
+ },
1047
+ {
1048
+ "epoch": 0.23,
1049
+ "learning_rate": 0.00019735949416717493,
1050
+ "loss": 0.5183,
1051
+ "step": 163
1052
+ },
1053
+ {
1054
+ "epoch": 0.23,
1055
+ "learning_rate": 0.00019732502016666476,
1056
+ "loss": 0.5566,
1057
+ "step": 164
1058
+ },
1059
+ {
1060
+ "epoch": 0.24,
1061
+ "learning_rate": 0.00019729032563026914,
1062
+ "loss": 0.7261,
1063
+ "step": 165
1064
+ },
1065
+ {
1066
+ "epoch": 0.24,
1067
+ "learning_rate": 0.00019725541063660498,
1068
+ "loss": 0.7432,
1069
+ "step": 166
1070
+ },
1071
+ {
1072
+ "epoch": 0.24,
1073
+ "learning_rate": 0.0001972202752647887,
1074
+ "loss": 0.6235,
1075
+ "step": 167
1076
+ },
1077
+ {
1078
+ "epoch": 0.24,
1079
+ "learning_rate": 0.00019718491959443615,
1080
+ "loss": 0.8306,
1081
+ "step": 168
1082
+ },
1083
+ {
1084
+ "epoch": 0.24,
1085
+ "learning_rate": 0.00019714934370566227,
1086
+ "loss": 0.7739,
1087
+ "step": 169
1088
+ },
1089
+ {
1090
+ "epoch": 0.24,
1091
+ "learning_rate": 0.00019711354767908113,
1092
+ "loss": 0.5514,
1093
+ "step": 170
1094
+ },
1095
+ {
1096
+ "epoch": 0.24,
1097
+ "learning_rate": 0.0001970775315958055,
1098
+ "loss": 0.6287,
1099
+ "step": 171
1100
+ },
1101
+ {
1102
+ "epoch": 0.25,
1103
+ "learning_rate": 0.00019704129553744696,
1104
+ "loss": 0.5172,
1105
+ "step": 172
1106
+ },
1107
+ {
1108
+ "epoch": 0.25,
1109
+ "learning_rate": 0.00019700483958611534,
1110
+ "loss": 0.5628,
1111
+ "step": 173
1112
+ },
1113
+ {
1114
+ "epoch": 0.25,
1115
+ "learning_rate": 0.0001969681638244189,
1116
+ "loss": 0.5371,
1117
+ "step": 174
1118
+ },
1119
+ {
1120
+ "epoch": 0.25,
1121
+ "learning_rate": 0.00019693126833546392,
1122
+ "loss": 0.5714,
1123
+ "step": 175
1124
+ },
1125
+ {
1126
+ "epoch": 0.25,
1127
+ "learning_rate": 0.0001968941532028546,
1128
+ "loss": 0.7978,
1129
+ "step": 176
1130
+ },
1131
+ {
1132
+ "epoch": 0.25,
1133
+ "learning_rate": 0.00019685681851069285,
1134
+ "loss": 0.7627,
1135
+ "step": 177
1136
+ },
1137
+ {
1138
+ "epoch": 0.25,
1139
+ "learning_rate": 0.00019681926434357802,
1140
+ "loss": 0.5672,
1141
+ "step": 178
1142
+ },
1143
+ {
1144
+ "epoch": 0.26,
1145
+ "learning_rate": 0.00019678149078660692,
1146
+ "loss": 0.639,
1147
+ "step": 179
1148
+ },
1149
+ {
1150
+ "epoch": 0.26,
1151
+ "learning_rate": 0.00019674349792537336,
1152
+ "loss": 0.6015,
1153
+ "step": 180
1154
+ },
1155
+ {
1156
+ "epoch": 0.26,
1157
+ "eval_loss": 0.616681694984436,
1158
+ "eval_runtime": 29.315,
1159
+ "eval_samples_per_second": 55.569,
1160
+ "eval_steps_per_second": 27.801,
1161
+ "step": 180
1162
+ },
1163
+ {
1164
+ "epoch": 0.26,
1165
+ "learning_rate": 0.0001967052858459682,
1166
+ "loss": 0.564,
1167
+ "step": 181
1168
+ },
1169
+ {
1170
+ "epoch": 0.26,
1171
+ "learning_rate": 0.0001966668546349789,
1172
+ "loss": 0.6838,
1173
+ "step": 182
1174
+ },
1175
+ {
1176
+ "epoch": 0.26,
1177
+ "learning_rate": 0.00019662820437948967,
1178
+ "loss": 0.6492,
1179
+ "step": 183
1180
+ },
1181
+ {
1182
+ "epoch": 0.26,
1183
+ "learning_rate": 0.00019658933516708085,
1184
+ "loss": 0.7017,
1185
+ "step": 184
1186
+ },
1187
+ {
1188
+ "epoch": 0.26,
1189
+ "learning_rate": 0.00019655024708582904,
1190
+ "loss": 0.7092,
1191
+ "step": 185
1192
+ },
1193
+ {
1194
+ "epoch": 0.27,
1195
+ "learning_rate": 0.00019651094022430686,
1196
+ "loss": 0.4604,
1197
+ "step": 186
1198
+ },
1199
+ {
1200
+ "epoch": 0.27,
1201
+ "learning_rate": 0.0001964714146715826,
1202
+ "loss": 0.6142,
1203
+ "step": 187
1204
+ },
1205
+ {
1206
+ "epoch": 0.27,
1207
+ "learning_rate": 0.00019643167051722,
1208
+ "loss": 0.6881,
1209
+ "step": 188
1210
+ },
1211
+ {
1212
+ "epoch": 0.27,
1213
+ "learning_rate": 0.00019639170785127835,
1214
+ "loss": 0.5784,
1215
+ "step": 189
1216
+ },
1217
+ {
1218
+ "epoch": 0.27,
1219
+ "learning_rate": 0.0001963515267643119,
1220
+ "loss": 0.8617,
1221
+ "step": 190
1222
+ },
1223
+ {
1224
+ "epoch": 0.27,
1225
+ "learning_rate": 0.00019631112734737,
1226
+ "loss": 0.7697,
1227
+ "step": 191
1228
+ },
1229
+ {
1230
+ "epoch": 0.27,
1231
+ "learning_rate": 0.00019627050969199655,
1232
+ "loss": 0.5587,
1233
+ "step": 192
1234
+ },
1235
+ {
1236
+ "epoch": 0.28,
1237
+ "learning_rate": 0.00019622967389023015,
1238
+ "loss": 0.5915,
1239
+ "step": 193
1240
+ },
1241
+ {
1242
+ "epoch": 0.28,
1243
+ "learning_rate": 0.0001961886200346036,
1244
+ "loss": 0.9243,
1245
+ "step": 194
1246
+ },
1247
+ {
1248
+ "epoch": 0.28,
1249
+ "learning_rate": 0.00019614734821814383,
1250
+ "loss": 0.7143,
1251
+ "step": 195
1252
+ },
1253
+ {
1254
+ "epoch": 0.28,
1255
+ "learning_rate": 0.00019610585853437165,
1256
+ "loss": 0.9429,
1257
+ "step": 196
1258
+ },
1259
+ {
1260
+ "epoch": 0.28,
1261
+ "learning_rate": 0.00019606415107730165,
1262
+ "loss": 0.5176,
1263
+ "step": 197
1264
+ },
1265
+ {
1266
+ "epoch": 0.28,
1267
+ "learning_rate": 0.0001960222259414417,
1268
+ "loss": 0.5437,
1269
+ "step": 198
1270
+ },
1271
+ {
1272
+ "epoch": 0.28,
1273
+ "learning_rate": 0.00019598008322179312,
1274
+ "loss": 0.6687,
1275
+ "step": 199
1276
+ },
1277
+ {
1278
+ "epoch": 0.29,
1279
+ "learning_rate": 0.00019593772301385016,
1280
+ "loss": 0.716,
1281
+ "step": 200
1282
+ },
1283
+ {
1284
+ "epoch": 0.29,
1285
+ "eval_loss": 0.6165403127670288,
1286
+ "eval_runtime": 29.3359,
1287
+ "eval_samples_per_second": 55.529,
1288
+ "eval_steps_per_second": 27.782,
1289
+ "step": 200
1290
+ },
1291
+ {
1292
+ "epoch": 0.29,
1293
+ "learning_rate": 0.0001958951454135999,
1294
+ "loss": 0.6579,
1295
+ "step": 201
1296
+ },
1297
+ {
1298
+ "epoch": 0.29,
1299
+ "learning_rate": 0.000195852350517522,
1300
+ "loss": 0.6,
1301
+ "step": 202
1302
+ },
1303
+ {
1304
+ "epoch": 0.29,
1305
+ "learning_rate": 0.00019580933842258867,
1306
+ "loss": 0.6689,
1307
+ "step": 203
1308
+ },
1309
+ {
1310
+ "epoch": 0.29,
1311
+ "learning_rate": 0.00019576610922626402,
1312
+ "loss": 0.679,
1313
+ "step": 204
1314
+ },
1315
+ {
1316
+ "epoch": 0.29,
1317
+ "learning_rate": 0.00019572266302650434,
1318
+ "loss": 0.8533,
1319
+ "step": 205
1320
+ },
1321
+ {
1322
+ "epoch": 0.29,
1323
+ "learning_rate": 0.00019567899992175753,
1324
+ "loss": 0.5989,
1325
+ "step": 206
1326
+ },
1327
+ {
1328
+ "epoch": 0.3,
1329
+ "learning_rate": 0.000195635120010963,
1330
+ "loss": 0.5986,
1331
+ "step": 207
1332
+ },
1333
+ {
1334
+ "epoch": 0.3,
1335
+ "learning_rate": 0.00019559102339355148,
1336
+ "loss": 0.7082,
1337
+ "step": 208
1338
+ },
1339
+ {
1340
+ "epoch": 0.3,
1341
+ "learning_rate": 0.00019554671016944474,
1342
+ "loss": 0.6403,
1343
+ "step": 209
1344
+ },
1345
+ {
1346
+ "epoch": 0.3,
1347
+ "learning_rate": 0.00019550218043905526,
1348
+ "loss": 0.5886,
1349
+ "step": 210
1350
+ },
1351
+ {
1352
+ "epoch": 0.3,
1353
+ "learning_rate": 0.00019545743430328632,
1354
+ "loss": 0.5391,
1355
+ "step": 211
1356
+ },
1357
+ {
1358
+ "epoch": 0.3,
1359
+ "learning_rate": 0.0001954124718635314,
1360
+ "loss": 0.6303,
1361
+ "step": 212
1362
+ },
1363
+ {
1364
+ "epoch": 0.3,
1365
+ "learning_rate": 0.0001953672932216742,
1366
+ "loss": 0.7248,
1367
+ "step": 213
1368
+ },
1369
+ {
1370
+ "epoch": 0.31,
1371
+ "learning_rate": 0.00019532189848008833,
1372
+ "loss": 0.6166,
1373
+ "step": 214
1374
+ },
1375
+ {
1376
+ "epoch": 0.31,
1377
+ "learning_rate": 0.00019527628774163705,
1378
+ "loss": 0.5582,
1379
+ "step": 215
1380
+ },
1381
+ {
1382
+ "epoch": 0.31,
1383
+ "learning_rate": 0.00019523046110967305,
1384
+ "loss": 0.6682,
1385
+ "step": 216
1386
+ },
1387
+ {
1388
+ "epoch": 0.31,
1389
+ "learning_rate": 0.00019518441868803828,
1390
+ "loss": 0.6317,
1391
+ "step": 217
1392
+ },
1393
+ {
1394
+ "epoch": 0.31,
1395
+ "learning_rate": 0.0001951381605810636,
1396
+ "loss": 0.7702,
1397
+ "step": 218
1398
+ },
1399
+ {
1400
+ "epoch": 0.31,
1401
+ "learning_rate": 0.00019509168689356866,
1402
+ "loss": 0.584,
1403
+ "step": 219
1404
+ },
1405
+ {
1406
+ "epoch": 0.31,
1407
+ "learning_rate": 0.0001950449977308616,
1408
+ "loss": 0.6304,
1409
+ "step": 220
1410
+ },
1411
+ {
1412
+ "epoch": 0.31,
1413
+ "eval_loss": 0.6014450192451477,
1414
+ "eval_runtime": 29.301,
1415
+ "eval_samples_per_second": 55.595,
1416
+ "eval_steps_per_second": 27.815,
1417
+ "step": 220
1418
+ },
1419
+ {
1420
+ "epoch": 0.32,
1421
+ "learning_rate": 0.00019499809319873873,
1422
+ "loss": 0.5839,
1423
+ "step": 221
1424
+ },
1425
+ {
1426
+ "epoch": 0.32,
1427
+ "learning_rate": 0.00019495097340348458,
1428
+ "loss": 0.589,
1429
+ "step": 222
1430
+ },
1431
+ {
1432
+ "epoch": 0.32,
1433
+ "learning_rate": 0.00019490363845187125,
1434
+ "loss": 0.8189,
1435
+ "step": 223
1436
+ },
1437
+ {
1438
+ "epoch": 0.32,
1439
+ "learning_rate": 0.00019485608845115854,
1440
+ "loss": 0.5217,
1441
+ "step": 224
1442
+ },
1443
+ {
1444
+ "epoch": 0.32,
1445
+ "learning_rate": 0.00019480832350909344,
1446
+ "loss": 0.6624,
1447
+ "step": 225
1448
+ },
1449
+ {
1450
+ "epoch": 0.32,
1451
+ "learning_rate": 0.00019476034373391005,
1452
+ "loss": 0.9488,
1453
+ "step": 226
1454
+ },
1455
+ {
1456
+ "epoch": 0.32,
1457
+ "learning_rate": 0.0001947121492343292,
1458
+ "loss": 0.7354,
1459
+ "step": 227
1460
+ },
1461
+ {
1462
+ "epoch": 0.33,
1463
+ "learning_rate": 0.0001946637401195584,
1464
+ "loss": 0.6767,
1465
+ "step": 228
1466
+ },
1467
+ {
1468
+ "epoch": 0.33,
1469
+ "learning_rate": 0.00019461511649929137,
1470
+ "loss": 0.6337,
1471
+ "step": 229
1472
+ },
1473
+ {
1474
+ "epoch": 0.33,
1475
+ "learning_rate": 0.00019456627848370793,
1476
+ "loss": 0.436,
1477
+ "step": 230
1478
+ },
1479
+ {
1480
+ "epoch": 0.33,
1481
+ "learning_rate": 0.0001945172261834737,
1482
+ "loss": 0.4473,
1483
+ "step": 231
1484
+ },
1485
+ {
1486
+ "epoch": 0.33,
1487
+ "learning_rate": 0.00019446795970973993,
1488
+ "loss": 0.5208,
1489
+ "step": 232
1490
+ },
1491
+ {
1492
+ "epoch": 0.33,
1493
+ "learning_rate": 0.00019441847917414307,
1494
+ "loss": 0.5907,
1495
+ "step": 233
1496
+ },
1497
+ {
1498
+ "epoch": 0.33,
1499
+ "learning_rate": 0.0001943687846888047,
1500
+ "loss": 0.6171,
1501
+ "step": 234
1502
+ },
1503
+ {
1504
+ "epoch": 0.34,
1505
+ "learning_rate": 0.00019431887636633125,
1506
+ "loss": 0.7125,
1507
+ "step": 235
1508
+ },
1509
+ {
1510
+ "epoch": 0.34,
1511
+ "learning_rate": 0.00019426875431981355,
1512
+ "loss": 0.46,
1513
+ "step": 236
1514
+ },
1515
+ {
1516
+ "epoch": 0.34,
1517
+ "learning_rate": 0.00019421841866282686,
1518
+ "loss": 0.71,
1519
+ "step": 237
1520
+ },
1521
+ {
1522
+ "epoch": 0.34,
1523
+ "learning_rate": 0.00019416786950943044,
1524
+ "loss": 0.6707,
1525
+ "step": 238
1526
+ },
1527
+ {
1528
+ "epoch": 0.34,
1529
+ "learning_rate": 0.00019411710697416726,
1530
+ "loss": 0.4639,
1531
+ "step": 239
1532
+ },
1533
+ {
1534
+ "epoch": 0.34,
1535
+ "learning_rate": 0.00019406613117206397,
1536
+ "loss": 0.5781,
1537
+ "step": 240
1538
+ },
1539
+ {
1540
+ "epoch": 0.34,
1541
+ "eval_loss": 0.6106613874435425,
1542
+ "eval_runtime": 29.3327,
1543
+ "eval_samples_per_second": 55.535,
1544
+ "eval_steps_per_second": 27.785,
1545
+ "step": 240
1546
+ },
1547
+ {
1548
+ "epoch": 0.34,
1549
+ "learning_rate": 0.00019401494221863024,
1550
+ "loss": 0.5778,
1551
+ "step": 241
1552
+ },
1553
+ {
1554
+ "epoch": 0.35,
1555
+ "learning_rate": 0.00019396354022985896,
1556
+ "loss": 0.6418,
1557
+ "step": 242
1558
+ },
1559
+ {
1560
+ "epoch": 0.35,
1561
+ "learning_rate": 0.0001939119253222256,
1562
+ "loss": 0.4679,
1563
+ "step": 243
1564
+ },
1565
+ {
1566
+ "epoch": 0.35,
1567
+ "learning_rate": 0.00019386009761268821,
1568
+ "loss": 0.6215,
1569
+ "step": 244
1570
+ },
1571
+ {
1572
+ "epoch": 0.35,
1573
+ "learning_rate": 0.00019380805721868694,
1574
+ "loss": 0.5621,
1575
+ "step": 245
1576
+ },
1577
+ {
1578
+ "epoch": 0.35,
1579
+ "learning_rate": 0.00019375580425814396,
1580
+ "loss": 0.5727,
1581
+ "step": 246
1582
+ },
1583
+ {
1584
+ "epoch": 0.35,
1585
+ "learning_rate": 0.00019370333884946307,
1586
+ "loss": 0.7134,
1587
+ "step": 247
1588
+ },
1589
+ {
1590
+ "epoch": 0.35,
1591
+ "learning_rate": 0.0001936506611115295,
1592
+ "loss": 0.6081,
1593
+ "step": 248
1594
+ },
1595
+ {
1596
+ "epoch": 0.36,
1597
+ "learning_rate": 0.00019359777116370955,
1598
+ "loss": 0.9212,
1599
+ "step": 249
1600
+ },
1601
+ {
1602
+ "epoch": 0.36,
1603
+ "learning_rate": 0.0001935446691258504,
1604
+ "loss": 0.5593,
1605
+ "step": 250
1606
+ },
1607
+ {
1608
+ "epoch": 0.36,
1609
+ "learning_rate": 0.00019349135511827995,
1610
+ "loss": 0.6382,
1611
+ "step": 251
1612
+ },
1613
+ {
1614
+ "epoch": 0.36,
1615
+ "learning_rate": 0.0001934378292618062,
1616
+ "loss": 0.6483,
1617
+ "step": 252
1618
+ },
1619
+ {
1620
+ "epoch": 0.36,
1621
+ "learning_rate": 0.00019338409167771734,
1622
+ "loss": 0.5854,
1623
+ "step": 253
1624
+ },
1625
+ {
1626
+ "epoch": 0.36,
1627
+ "learning_rate": 0.00019333014248778133,
1628
+ "loss": 0.6317,
1629
+ "step": 254
1630
+ },
1631
+ {
1632
+ "epoch": 0.36,
1633
+ "learning_rate": 0.00019327598181424557,
1634
+ "loss": 0.556,
1635
+ "step": 255
1636
+ },
1637
+ {
1638
+ "epoch": 0.37,
1639
+ "learning_rate": 0.0001932216097798367,
1640
+ "loss": 0.7319,
1641
+ "step": 256
1642
+ },
1643
+ {
1644
+ "epoch": 0.37,
1645
+ "learning_rate": 0.0001931670265077602,
1646
+ "loss": 0.6195,
1647
+ "step": 257
1648
+ },
1649
+ {
1650
+ "epoch": 0.37,
1651
+ "learning_rate": 0.00019311223212170045,
1652
+ "loss": 0.5316,
1653
+ "step": 258
1654
+ },
1655
+ {
1656
+ "epoch": 0.37,
1657
+ "learning_rate": 0.00019305722674581996,
1658
+ "loss": 0.753,
1659
+ "step": 259
1660
+ },
1661
+ {
1662
+ "epoch": 0.37,
1663
+ "learning_rate": 0.00019300201050475948,
1664
+ "loss": 0.8,
1665
+ "step": 260
1666
+ },
1667
+ {
1668
+ "epoch": 0.37,
1669
+ "eval_loss": 0.594850480556488,
1670
+ "eval_runtime": 29.3304,
1671
+ "eval_samples_per_second": 55.54,
1672
+ "eval_steps_per_second": 27.787,
1673
+ "step": 260
1674
+ },
1675
+ {
1676
+ "epoch": 0.37,
1677
+ "learning_rate": 0.0001929465835236375,
1678
+ "loss": 0.5674,
1679
+ "step": 261
1680
+ },
1681
+ {
1682
+ "epoch": 0.37,
1683
+ "learning_rate": 0.00019289094592805011,
1684
+ "loss": 0.5302,
1685
+ "step": 262
1686
+ },
1687
+ {
1688
+ "epoch": 0.38,
1689
+ "learning_rate": 0.00019283509784407058,
1690
+ "loss": 0.621,
1691
+ "step": 263
1692
+ },
1693
+ {
1694
+ "epoch": 0.38,
1695
+ "learning_rate": 0.00019277903939824914,
1696
+ "loss": 0.6329,
1697
+ "step": 264
1698
+ },
1699
+ {
1700
+ "epoch": 0.38,
1701
+ "learning_rate": 0.00019272277071761282,
1702
+ "loss": 0.5637,
1703
+ "step": 265
1704
+ },
1705
+ {
1706
+ "epoch": 0.38,
1707
+ "learning_rate": 0.00019266629192966485,
1708
+ "loss": 0.5367,
1709
+ "step": 266
1710
+ },
1711
+ {
1712
+ "epoch": 0.38,
1713
+ "learning_rate": 0.00019260960316238467,
1714
+ "loss": 0.6705,
1715
+ "step": 267
1716
+ },
1717
+ {
1718
+ "epoch": 0.38,
1719
+ "learning_rate": 0.00019255270454422756,
1720
+ "loss": 0.7982,
1721
+ "step": 268
1722
+ },
1723
+ {
1724
+ "epoch": 0.38,
1725
+ "learning_rate": 0.00019249559620412418,
1726
+ "loss": 0.5728,
1727
+ "step": 269
1728
+ },
1729
+ {
1730
+ "epoch": 0.39,
1731
+ "learning_rate": 0.00019243827827148055,
1732
+ "loss": 0.5841,
1733
+ "step": 270
1734
+ },
1735
+ {
1736
+ "epoch": 0.39,
1737
+ "learning_rate": 0.00019238075087617759,
1738
+ "loss": 0.7056,
1739
+ "step": 271
1740
+ },
1741
+ {
1742
+ "epoch": 0.39,
1743
+ "learning_rate": 0.00019232301414857074,
1744
+ "loss": 0.6554,
1745
+ "step": 272
1746
+ },
1747
+ {
1748
+ "epoch": 0.39,
1749
+ "learning_rate": 0.00019226506821948998,
1750
+ "loss": 0.6277,
1751
+ "step": 273
1752
+ },
1753
+ {
1754
+ "epoch": 0.39,
1755
+ "learning_rate": 0.00019220691322023917,
1756
+ "loss": 0.5815,
1757
+ "step": 274
1758
+ },
1759
+ {
1760
+ "epoch": 0.39,
1761
+ "learning_rate": 0.00019214854928259603,
1762
+ "loss": 0.722,
1763
+ "step": 275
1764
+ },
1765
+ {
1766
+ "epoch": 0.39,
1767
+ "learning_rate": 0.00019208997653881164,
1768
+ "loss": 0.6855,
1769
+ "step": 276
1770
+ },
1771
+ {
1772
+ "epoch": 0.4,
1773
+ "learning_rate": 0.00019203119512161023,
1774
+ "loss": 0.532,
1775
+ "step": 277
1776
+ },
1777
+ {
1778
+ "epoch": 0.4,
1779
+ "learning_rate": 0.00019197220516418902,
1780
+ "loss": 0.5008,
1781
+ "step": 278
1782
+ },
1783
+ {
1784
+ "epoch": 0.4,
1785
+ "learning_rate": 0.00019191300680021755,
1786
+ "loss": 0.5297,
1787
+ "step": 279
1788
+ },
1789
+ {
1790
+ "epoch": 0.4,
1791
+ "learning_rate": 0.0001918536001638378,
1792
+ "loss": 0.6845,
1793
+ "step": 280
1794
+ },
1795
+ {
1796
+ "epoch": 0.4,
1797
+ "eval_loss": 0.595288097858429,
1798
+ "eval_runtime": 29.2376,
1799
+ "eval_samples_per_second": 55.716,
1800
+ "eval_steps_per_second": 27.875,
1801
+ "step": 280
1802
+ },
1803
+ {
1804
+ "epoch": 0.4,
1805
+ "learning_rate": 0.00019179398538966358,
1806
+ "loss": 0.6998,
1807
+ "step": 281
1808
+ },
1809
+ {
1810
+ "epoch": 0.4,
1811
+ "learning_rate": 0.00019173416261278044,
1812
+ "loss": 0.8184,
1813
+ "step": 282
1814
+ },
1815
+ {
1816
+ "epoch": 0.4,
1817
+ "learning_rate": 0.0001916741319687451,
1818
+ "loss": 0.4835,
1819
+ "step": 283
1820
+ },
1821
+ {
1822
+ "epoch": 0.41,
1823
+ "learning_rate": 0.0001916138935935854,
1824
+ "loss": 0.7273,
1825
+ "step": 284
1826
+ },
1827
+ {
1828
+ "epoch": 0.41,
1829
+ "learning_rate": 0.00019155344762379994,
1830
+ "loss": 0.854,
1831
+ "step": 285
1832
+ },
1833
+ {
1834
+ "epoch": 0.41,
1835
+ "learning_rate": 0.0001914927941963576,
1836
+ "loss": 0.6895,
1837
+ "step": 286
1838
+ },
1839
+ {
1840
+ "epoch": 0.41,
1841
+ "learning_rate": 0.0001914319334486975,
1842
+ "loss": 0.6412,
1843
+ "step": 287
1844
+ },
1845
+ {
1846
+ "epoch": 0.41,
1847
+ "learning_rate": 0.0001913708655187284,
1848
+ "loss": 0.5484,
1849
+ "step": 288
1850
+ },
1851
+ {
1852
+ "epoch": 0.41,
1853
+ "learning_rate": 0.00019130959054482858,
1854
+ "loss": 0.5316,
1855
+ "step": 289
1856
+ },
1857
+ {
1858
+ "epoch": 0.41,
1859
+ "learning_rate": 0.00019124810866584554,
1860
+ "loss": 0.5696,
1861
+ "step": 290
1862
+ },
1863
+ {
1864
+ "epoch": 0.42,
1865
+ "learning_rate": 0.00019118642002109552,
1866
+ "loss": 0.6214,
1867
+ "step": 291
1868
+ },
1869
+ {
1870
+ "epoch": 0.42,
1871
+ "learning_rate": 0.00019112452475036337,
1872
+ "loss": 0.5533,
1873
+ "step": 292
1874
+ },
1875
+ {
1876
+ "epoch": 0.42,
1877
+ "learning_rate": 0.00019106242299390212,
1878
+ "loss": 0.4784,
1879
+ "step": 293
1880
+ },
1881
+ {
1882
+ "epoch": 0.42,
1883
+ "learning_rate": 0.00019100011489243263,
1884
+ "loss": 0.856,
1885
+ "step": 294
1886
+ },
1887
+ {
1888
+ "epoch": 0.42,
1889
+ "learning_rate": 0.00019093760058714346,
1890
+ "loss": 0.6587,
1891
+ "step": 295
1892
+ },
1893
+ {
1894
+ "epoch": 0.42,
1895
+ "learning_rate": 0.00019087488021969027,
1896
+ "loss": 0.6849,
1897
+ "step": 296
1898
+ },
1899
+ {
1900
+ "epoch": 0.42,
1901
+ "learning_rate": 0.0001908119539321958,
1902
+ "loss": 0.5236,
1903
+ "step": 297
1904
+ },
1905
+ {
1906
+ "epoch": 0.43,
1907
+ "learning_rate": 0.00019074882186724928,
1908
+ "loss": 0.584,
1909
+ "step": 298
1910
+ },
1911
+ {
1912
+ "epoch": 0.43,
1913
+ "learning_rate": 0.0001906854841679063,
1914
+ "loss": 0.5225,
1915
+ "step": 299
1916
+ },
1917
+ {
1918
+ "epoch": 0.43,
1919
+ "learning_rate": 0.0001906219409776884,
1920
+ "loss": 0.5857,
1921
+ "step": 300
1922
+ },
1923
+ {
1924
+ "epoch": 0.43,
1925
+ "eval_loss": 0.5940439701080322,
1926
+ "eval_runtime": 29.3378,
1927
+ "eval_samples_per_second": 55.526,
1928
+ "eval_steps_per_second": 27.78,
1929
+ "step": 300
1930
+ },
1931
+ {
1932
+ "epoch": 0.43,
1933
+ "learning_rate": 0.00019055819244058272,
1934
+ "loss": 0.9588,
1935
+ "step": 301
1936
+ },
1937
+ {
1938
+ "epoch": 0.43,
1939
+ "learning_rate": 0.00019049423870104174,
1940
+ "loss": 0.5345,
1941
+ "step": 302
1942
+ },
1943
+ {
1944
+ "epoch": 0.43,
1945
+ "learning_rate": 0.00019043007990398293,
1946
+ "loss": 0.827,
1947
+ "step": 303
1948
+ },
1949
+ {
1950
+ "epoch": 0.43,
1951
+ "learning_rate": 0.0001903657161947884,
1952
+ "loss": 0.53,
1953
+ "step": 304
1954
+ },
1955
+ {
1956
+ "epoch": 0.44,
1957
+ "learning_rate": 0.0001903011477193046,
1958
+ "loss": 0.469,
1959
+ "step": 305
1960
+ },
1961
+ {
1962
+ "epoch": 0.44,
1963
+ "learning_rate": 0.00019023637462384194,
1964
+ "loss": 0.6566,
1965
+ "step": 306
1966
+ },
1967
+ {
1968
+ "epoch": 0.44,
1969
+ "learning_rate": 0.00019017139705517454,
1970
+ "loss": 0.5136,
1971
+ "step": 307
1972
+ },
1973
+ {
1974
+ "epoch": 0.44,
1975
+ "learning_rate": 0.00019010621516053977,
1976
+ "loss": 0.6217,
1977
+ "step": 308
1978
+ },
1979
+ {
1980
+ "epoch": 0.44,
1981
+ "learning_rate": 0.00019004082908763813,
1982
+ "loss": 0.5953,
1983
+ "step": 309
1984
+ },
1985
+ {
1986
+ "epoch": 0.44,
1987
+ "learning_rate": 0.00018997523898463267,
1988
+ "loss": 0.6747,
1989
+ "step": 310
1990
+ },
1991
+ {
1992
+ "epoch": 0.44,
1993
+ "learning_rate": 0.00018990944500014883,
1994
+ "loss": 0.5683,
1995
+ "step": 311
1996
+ },
1997
+ {
1998
+ "epoch": 0.45,
1999
+ "learning_rate": 0.00018984344728327395,
2000
+ "loss": 0.8048,
2001
+ "step": 312
2002
+ },
2003
+ {
2004
+ "epoch": 0.45,
2005
+ "learning_rate": 0.00018977724598355717,
2006
+ "loss": 0.5998,
2007
+ "step": 313
2008
+ },
2009
+ {
2010
+ "epoch": 0.45,
2011
+ "learning_rate": 0.00018971084125100882,
2012
+ "loss": 0.6533,
2013
+ "step": 314
2014
+ },
2015
+ {
2016
+ "epoch": 0.45,
2017
+ "learning_rate": 0.00018964423323610026,
2018
+ "loss": 0.5986,
2019
+ "step": 315
2020
+ },
2021
+ {
2022
+ "epoch": 0.45,
2023
+ "learning_rate": 0.00018957742208976344,
2024
+ "loss": 0.5504,
2025
+ "step": 316
2026
+ },
2027
+ {
2028
+ "epoch": 0.45,
2029
+ "learning_rate": 0.0001895104079633906,
2030
+ "loss": 0.6991,
2031
+ "step": 317
2032
+ },
2033
+ {
2034
+ "epoch": 0.45,
2035
+ "learning_rate": 0.00018944319100883404,
2036
+ "loss": 0.566,
2037
+ "step": 318
2038
+ },
2039
+ {
2040
+ "epoch": 0.46,
2041
+ "learning_rate": 0.0001893757713784055,
2042
+ "loss": 0.5838,
2043
+ "step": 319
2044
+ },
2045
+ {
2046
+ "epoch": 0.46,
2047
+ "learning_rate": 0.00018930814922487607,
2048
+ "loss": 0.6369,
2049
+ "step": 320
2050
+ },
2051
+ {
2052
+ "epoch": 0.46,
2053
+ "eval_loss": 0.5889019966125488,
2054
+ "eval_runtime": 29.353,
2055
+ "eval_samples_per_second": 55.497,
2056
+ "eval_steps_per_second": 27.765,
2057
+ "step": 320
2058
+ },
2059
+ {
2060
+ "epoch": 0.46,
2061
+ "learning_rate": 0.00018924032470147575,
2062
+ "loss": 0.6911,
2063
+ "step": 321
2064
+ },
2065
+ {
2066
+ "epoch": 0.46,
2067
+ "learning_rate": 0.0001891722979618931,
2068
+ "loss": 0.839,
2069
+ "step": 322
2070
+ },
2071
+ {
2072
+ "epoch": 0.46,
2073
+ "learning_rate": 0.0001891040691602749,
2074
+ "loss": 0.664,
2075
+ "step": 323
2076
+ },
2077
+ {
2078
+ "epoch": 0.46,
2079
+ "learning_rate": 0.0001890356384512257,
2080
+ "loss": 0.7154,
2081
+ "step": 324
2082
+ },
2083
+ {
2084
+ "epoch": 0.46,
2085
+ "learning_rate": 0.00018896700598980775,
2086
+ "loss": 0.6249,
2087
+ "step": 325
2088
+ },
2089
+ {
2090
+ "epoch": 0.47,
2091
+ "learning_rate": 0.0001888981719315403,
2092
+ "loss": 0.6035,
2093
+ "step": 326
2094
+ },
2095
+ {
2096
+ "epoch": 0.47,
2097
+ "learning_rate": 0.00018882913643239953,
2098
+ "loss": 0.542,
2099
+ "step": 327
2100
+ },
2101
+ {
2102
+ "epoch": 0.47,
2103
+ "learning_rate": 0.00018875989964881797,
2104
+ "loss": 0.7356,
2105
+ "step": 328
2106
+ },
2107
+ {
2108
+ "epoch": 0.47,
2109
+ "learning_rate": 0.0001886904617376844,
2110
+ "loss": 0.5376,
2111
+ "step": 329
2112
+ },
2113
+ {
2114
+ "epoch": 0.47,
2115
+ "learning_rate": 0.0001886208228563432,
2116
+ "loss": 0.5325,
2117
+ "step": 330
2118
+ },
2119
+ {
2120
+ "epoch": 0.47,
2121
+ "learning_rate": 0.0001885509831625942,
2122
+ "loss": 0.4952,
2123
+ "step": 331
2124
+ },
2125
+ {
2126
+ "epoch": 0.47,
2127
+ "learning_rate": 0.0001884809428146923,
2128
+ "loss": 0.5887,
2129
+ "step": 332
2130
+ },
2131
+ {
2132
+ "epoch": 0.48,
2133
+ "learning_rate": 0.00018841070197134706,
2134
+ "loss": 0.5159,
2135
+ "step": 333
2136
+ },
2137
+ {
2138
+ "epoch": 0.48,
2139
+ "learning_rate": 0.00018834026079172237,
2140
+ "loss": 0.6428,
2141
+ "step": 334
2142
+ },
2143
+ {
2144
+ "epoch": 0.48,
2145
+ "learning_rate": 0.00018826961943543594,
2146
+ "loss": 0.624,
2147
+ "step": 335
2148
+ },
2149
+ {
2150
+ "epoch": 0.48,
2151
+ "learning_rate": 0.00018819877806255933,
2152
+ "loss": 0.7188,
2153
+ "step": 336
2154
+ },
2155
+ {
2156
+ "epoch": 0.48,
2157
+ "learning_rate": 0.00018812773683361708,
2158
+ "loss": 0.4654,
2159
+ "step": 337
2160
+ },
2161
+ {
2162
+ "epoch": 0.48,
2163
+ "learning_rate": 0.00018805649590958678,
2164
+ "loss": 0.7584,
2165
+ "step": 338
2166
+ },
2167
+ {
2168
+ "epoch": 0.48,
2169
+ "learning_rate": 0.00018798505545189844,
2170
+ "loss": 0.5568,
2171
+ "step": 339
2172
+ },
2173
+ {
2174
+ "epoch": 0.49,
2175
+ "learning_rate": 0.00018791341562243418,
2176
+ "loss": 0.4767,
2177
+ "step": 340
2178
+ },
2179
+ {
2180
+ "epoch": 0.49,
2181
+ "eval_loss": 0.5945929288864136,
2182
+ "eval_runtime": 29.3121,
2183
+ "eval_samples_per_second": 55.574,
2184
+ "eval_steps_per_second": 27.804,
2185
+ "step": 340
2186
+ },
2187
+ {
2188
+ "epoch": 0.49,
2189
+ "learning_rate": 0.000187841576583528,
2190
+ "loss": 0.6751,
2191
+ "step": 341
2192
+ },
2193
+ {
2194
+ "epoch": 0.49,
2195
+ "learning_rate": 0.00018776953849796514,
2196
+ "loss": 0.4626,
2197
+ "step": 342
2198
+ },
2199
+ {
2200
+ "epoch": 0.49,
2201
+ "learning_rate": 0.00018769730152898208,
2202
+ "loss": 0.7323,
2203
+ "step": 343
2204
+ },
2205
+ {
2206
+ "epoch": 0.49,
2207
+ "learning_rate": 0.00018762486584026578,
2208
+ "loss": 0.4619,
2209
+ "step": 344
2210
+ },
2211
+ {
2212
+ "epoch": 0.49,
2213
+ "learning_rate": 0.0001875522315959536,
2214
+ "loss": 0.6054,
2215
+ "step": 345
2216
+ },
2217
+ {
2218
+ "epoch": 0.49,
2219
+ "learning_rate": 0.00018747939896063276,
2220
+ "loss": 0.6465,
2221
+ "step": 346
2222
+ },
2223
+ {
2224
+ "epoch": 0.5,
2225
+ "learning_rate": 0.00018740636809934009,
2226
+ "loss": 0.8281,
2227
+ "step": 347
2228
+ },
2229
+ {
2230
+ "epoch": 0.5,
2231
+ "learning_rate": 0.00018733313917756154,
2232
+ "loss": 0.6565,
2233
+ "step": 348
2234
+ },
2235
+ {
2236
+ "epoch": 0.5,
2237
+ "learning_rate": 0.0001872597123612319,
2238
+ "loss": 0.6819,
2239
+ "step": 349
2240
+ },
2241
+ {
2242
+ "epoch": 0.5,
2243
+ "learning_rate": 0.0001871860878167344,
2244
+ "loss": 0.7214,
2245
+ "step": 350
2246
+ },
2247
+ {
2248
+ "epoch": 0.5,
2249
+ "learning_rate": 0.0001871122657109002,
2250
+ "loss": 0.6414,
2251
+ "step": 351
2252
+ },
2253
+ {
2254
+ "epoch": 0.5,
2255
+ "learning_rate": 0.00018703824621100825,
2256
+ "loss": 0.3563,
2257
+ "step": 352
2258
+ },
2259
+ {
2260
+ "epoch": 0.51,
2261
+ "learning_rate": 0.00018696402948478475,
2262
+ "loss": 0.6458,
2263
+ "step": 353
2264
+ },
2265
+ {
2266
+ "epoch": 0.51,
2267
+ "learning_rate": 0.00018688961570040283,
2268
+ "loss": 0.4847,
2269
+ "step": 354
2270
+ },
2271
+ {
2272
+ "epoch": 0.51,
2273
+ "learning_rate": 0.00018681500502648214,
2274
+ "loss": 0.6457,
2275
+ "step": 355
2276
+ },
2277
+ {
2278
+ "epoch": 0.51,
2279
+ "learning_rate": 0.00018674019763208842,
2280
+ "loss": 0.7152,
2281
+ "step": 356
2282
+ },
2283
+ {
2284
+ "epoch": 0.51,
2285
+ "learning_rate": 0.00018666519368673324,
2286
+ "loss": 0.8583,
2287
+ "step": 357
2288
+ },
2289
+ {
2290
+ "epoch": 0.51,
2291
+ "learning_rate": 0.00018658999336037356,
2292
+ "loss": 0.7007,
2293
+ "step": 358
2294
+ },
2295
+ {
2296
+ "epoch": 0.51,
2297
+ "learning_rate": 0.00018651459682341126,
2298
+ "loss": 0.5519,
2299
+ "step": 359
2300
+ },
2301
+ {
2302
+ "epoch": 0.52,
2303
+ "learning_rate": 0.00018643900424669286,
2304
+ "loss": 0.4848,
2305
+ "step": 360
2306
+ },
2307
+ {
2308
+ "epoch": 0.52,
2309
+ "eval_loss": 0.5990561842918396,
2310
+ "eval_runtime": 29.3397,
2311
+ "eval_samples_per_second": 55.522,
2312
+ "eval_steps_per_second": 27.778,
2313
+ "step": 360
2314
+ },
2315
+ {
2316
+ "epoch": 0.52,
2317
+ "learning_rate": 0.00018636321580150917,
2318
+ "loss": 0.5851,
2319
+ "step": 361
2320
+ },
2321
+ {
2322
+ "epoch": 0.52,
2323
+ "learning_rate": 0.0001862872316595947,
2324
+ "loss": 0.5745,
2325
+ "step": 362
2326
+ },
2327
+ {
2328
+ "epoch": 0.52,
2329
+ "learning_rate": 0.00018621105199312753,
2330
+ "loss": 0.5597,
2331
+ "step": 363
2332
+ },
2333
+ {
2334
+ "epoch": 0.52,
2335
+ "learning_rate": 0.00018613467697472876,
2336
+ "loss": 0.6364,
2337
+ "step": 364
2338
+ },
2339
+ {
2340
+ "epoch": 0.52,
2341
+ "learning_rate": 0.0001860581067774621,
2342
+ "loss": 0.5668,
2343
+ "step": 365
2344
+ },
2345
+ {
2346
+ "epoch": 0.52,
2347
+ "learning_rate": 0.00018598134157483354,
2348
+ "loss": 0.7182,
2349
+ "step": 366
2350
+ },
2351
+ {
2352
+ "epoch": 0.53,
2353
+ "learning_rate": 0.000185904381540791,
2354
+ "loss": 0.5478,
2355
+ "step": 367
2356
+ },
2357
+ {
2358
+ "epoch": 0.53,
2359
+ "learning_rate": 0.00018582722684972383,
2360
+ "loss": 0.485,
2361
+ "step": 368
2362
+ },
2363
+ {
2364
+ "epoch": 0.53,
2365
+ "learning_rate": 0.00018574987767646254,
2366
+ "loss": 0.7902,
2367
+ "step": 369
2368
+ },
2369
+ {
2370
+ "epoch": 0.53,
2371
+ "learning_rate": 0.00018567233419627824,
2372
+ "loss": 0.6895,
2373
+ "step": 370
2374
+ },
2375
+ {
2376
+ "epoch": 0.53,
2377
+ "learning_rate": 0.00018559459658488238,
2378
+ "loss": 0.6304,
2379
+ "step": 371
2380
+ },
2381
+ {
2382
+ "epoch": 0.53,
2383
+ "learning_rate": 0.00018551666501842636,
2384
+ "loss": 0.4389,
2385
+ "step": 372
2386
+ },
2387
+ {
2388
+ "epoch": 0.53,
2389
+ "learning_rate": 0.0001854385396735009,
2390
+ "loss": 0.7157,
2391
+ "step": 373
2392
+ },
2393
+ {
2394
+ "epoch": 0.54,
2395
+ "learning_rate": 0.00018536022072713606,
2396
+ "loss": 0.552,
2397
+ "step": 374
2398
+ },
2399
+ {
2400
+ "epoch": 0.54,
2401
+ "learning_rate": 0.00018528170835680036,
2402
+ "loss": 0.5701,
2403
+ "step": 375
2404
+ },
2405
+ {
2406
+ "epoch": 0.54,
2407
+ "learning_rate": 0.00018520300274040084,
2408
+ "loss": 0.7629,
2409
+ "step": 376
2410
+ },
2411
+ {
2412
+ "epoch": 0.54,
2413
+ "learning_rate": 0.00018512410405628225,
2414
+ "loss": 0.4954,
2415
+ "step": 377
2416
+ },
2417
+ {
2418
+ "epoch": 0.54,
2419
+ "learning_rate": 0.00018504501248322686,
2420
+ "loss": 1.0569,
2421
+ "step": 378
2422
+ },
2423
+ {
2424
+ "epoch": 0.54,
2425
+ "learning_rate": 0.00018496572820045413,
2426
+ "loss": 0.5473,
2427
+ "step": 379
2428
+ },
2429
+ {
2430
+ "epoch": 0.54,
2431
+ "learning_rate": 0.00018488625138762008,
2432
+ "loss": 0.9067,
2433
+ "step": 380
2434
+ },
2435
+ {
2436
+ "epoch": 0.54,
2437
+ "eval_loss": 0.5943491458892822,
2438
+ "eval_runtime": 29.3323,
2439
+ "eval_samples_per_second": 55.536,
2440
+ "eval_steps_per_second": 27.785,
2441
+ "step": 380
2442
+ },
2443
+ {
2444
+ "epoch": 0.55,
2445
+ "learning_rate": 0.00018480658222481703,
2446
+ "loss": 0.4678,
2447
+ "step": 381
2448
+ },
2449
+ {
2450
+ "epoch": 0.55,
2451
+ "learning_rate": 0.0001847267208925732,
2452
+ "loss": 0.7051,
2453
+ "step": 382
2454
+ },
2455
+ {
2456
+ "epoch": 0.55,
2457
+ "learning_rate": 0.00018464666757185216,
2458
+ "loss": 0.3741,
2459
+ "step": 383
2460
+ },
2461
+ {
2462
+ "epoch": 0.55,
2463
+ "learning_rate": 0.00018456642244405266,
2464
+ "loss": 0.6583,
2465
+ "step": 384
2466
+ },
2467
+ {
2468
+ "epoch": 0.55,
2469
+ "learning_rate": 0.000184485985691008,
2470
+ "loss": 0.4571,
2471
+ "step": 385
2472
+ },
2473
+ {
2474
+ "epoch": 0.55,
2475
+ "learning_rate": 0.00018440535749498563,
2476
+ "loss": 0.4962,
2477
+ "step": 386
2478
+ },
2479
+ {
2480
+ "epoch": 0.55,
2481
+ "learning_rate": 0.00018432453803868696,
2482
+ "loss": 0.6971,
2483
+ "step": 387
2484
+ },
2485
+ {
2486
+ "epoch": 0.56,
2487
+ "learning_rate": 0.00018424352750524668,
2488
+ "loss": 0.7043,
2489
+ "step": 388
2490
+ },
2491
+ {
2492
+ "epoch": 0.56,
2493
+ "learning_rate": 0.0001841623260782325,
2494
+ "loss": 0.5788,
2495
+ "step": 389
2496
+ },
2497
+ {
2498
+ "epoch": 0.56,
2499
+ "learning_rate": 0.00018408093394164468,
2500
+ "loss": 0.6969,
2501
+ "step": 390
2502
+ },
2503
+ {
2504
+ "epoch": 0.56,
2505
+ "learning_rate": 0.00018399935127991554,
2506
+ "loss": 0.6253,
2507
+ "step": 391
2508
+ },
2509
+ {
2510
+ "epoch": 0.56,
2511
+ "learning_rate": 0.00018391757827790933,
2512
+ "loss": 0.6763,
2513
+ "step": 392
2514
+ },
2515
+ {
2516
+ "epoch": 0.56,
2517
+ "learning_rate": 0.00018383561512092138,
2518
+ "loss": 0.6583,
2519
+ "step": 393
2520
+ },
2521
+ {
2522
+ "epoch": 0.56,
2523
+ "learning_rate": 0.00018375346199467807,
2524
+ "loss": 0.5904,
2525
+ "step": 394
2526
+ },
2527
+ {
2528
+ "epoch": 0.57,
2529
+ "learning_rate": 0.00018367111908533615,
2530
+ "loss": 0.8813,
2531
+ "step": 395
2532
+ },
2533
+ {
2534
+ "epoch": 0.57,
2535
+ "learning_rate": 0.0001835885865794824,
2536
+ "loss": 0.7437,
2537
+ "step": 396
2538
+ },
2539
+ {
2540
+ "epoch": 0.57,
2541
+ "learning_rate": 0.00018350586466413336,
2542
+ "loss": 0.6893,
2543
+ "step": 397
2544
+ },
2545
+ {
2546
+ "epoch": 0.57,
2547
+ "learning_rate": 0.00018342295352673463,
2548
+ "loss": 0.5746,
2549
+ "step": 398
2550
+ },
2551
+ {
2552
+ "epoch": 0.57,
2553
+ "learning_rate": 0.00018333985335516057,
2554
+ "loss": 0.7338,
2555
+ "step": 399
2556
+ },
2557
+ {
2558
+ "epoch": 0.57,
2559
+ "learning_rate": 0.000183256564337714,
2560
+ "loss": 0.5943,
2561
+ "step": 400
2562
+ },
2563
+ {
2564
+ "epoch": 0.57,
2565
+ "eval_loss": 0.5853814482688904,
2566
+ "eval_runtime": 29.3481,
2567
+ "eval_samples_per_second": 55.506,
2568
+ "eval_steps_per_second": 27.77,
2569
+ "step": 400
2570
+ },
2571
+ {
2572
+ "epoch": 0.57,
2573
+ "learning_rate": 0.0001831730866631256,
2574
+ "loss": 0.631,
2575
+ "step": 401
2576
+ },
2577
+ {
2578
+ "epoch": 0.58,
2579
+ "learning_rate": 0.00018308942052055354,
2580
+ "loss": 0.5297,
2581
+ "step": 402
2582
+ },
2583
+ {
2584
+ "epoch": 0.58,
2585
+ "learning_rate": 0.00018300556609958304,
2586
+ "loss": 0.6393,
2587
+ "step": 403
2588
+ },
2589
+ {
2590
+ "epoch": 0.58,
2591
+ "learning_rate": 0.00018292152359022595,
2592
+ "loss": 0.4876,
2593
+ "step": 404
2594
+ },
2595
+ {
2596
+ "epoch": 0.58,
2597
+ "learning_rate": 0.00018283729318292036,
2598
+ "loss": 0.5634,
2599
+ "step": 405
2600
+ },
2601
+ {
2602
+ "epoch": 0.58,
2603
+ "learning_rate": 0.00018275287506853017,
2604
+ "loss": 0.4768,
2605
+ "step": 406
2606
+ },
2607
+ {
2608
+ "epoch": 0.58,
2609
+ "learning_rate": 0.00018266826943834445,
2610
+ "loss": 0.9219,
2611
+ "step": 407
2612
+ },
2613
+ {
2614
+ "epoch": 0.58,
2615
+ "learning_rate": 0.0001825834764840774,
2616
+ "loss": 0.5326,
2617
+ "step": 408
2618
+ },
2619
+ {
2620
+ "epoch": 0.59,
2621
+ "learning_rate": 0.00018249849639786749,
2622
+ "loss": 0.717,
2623
+ "step": 409
2624
+ },
2625
+ {
2626
+ "epoch": 0.59,
2627
+ "learning_rate": 0.00018241332937227734,
2628
+ "loss": 0.7521,
2629
+ "step": 410
2630
+ },
2631
+ {
2632
+ "epoch": 0.59,
2633
+ "learning_rate": 0.0001823279756002932,
2634
+ "loss": 0.8977,
2635
+ "step": 411
2636
+ },
2637
+ {
2638
+ "epoch": 0.59,
2639
+ "learning_rate": 0.0001822424352753244,
2640
+ "loss": 0.7813,
2641
+ "step": 412
2642
+ },
2643
+ {
2644
+ "epoch": 0.59,
2645
+ "learning_rate": 0.000182156708591203,
2646
+ "loss": 0.8893,
2647
+ "step": 413
2648
+ },
2649
+ {
2650
+ "epoch": 0.59,
2651
+ "learning_rate": 0.00018207079574218338,
2652
+ "loss": 0.6064,
2653
+ "step": 414
2654
+ },
2655
+ {
2656
+ "epoch": 0.59,
2657
+ "learning_rate": 0.00018198469692294174,
2658
+ "loss": 0.8171,
2659
+ "step": 415
2660
+ },
2661
+ {
2662
+ "epoch": 0.6,
2663
+ "learning_rate": 0.00018189841232857571,
2664
+ "loss": 0.6169,
2665
+ "step": 416
2666
+ },
2667
+ {
2668
+ "epoch": 0.6,
2669
+ "learning_rate": 0.00018181194215460388,
2670
+ "loss": 0.5828,
2671
+ "step": 417
2672
+ },
2673
+ {
2674
+ "epoch": 0.6,
2675
+ "learning_rate": 0.00018172528659696533,
2676
+ "loss": 0.5173,
2677
+ "step": 418
2678
+ },
2679
+ {
2680
+ "epoch": 0.6,
2681
+ "learning_rate": 0.0001816384458520192,
2682
+ "loss": 0.5217,
2683
+ "step": 419
2684
+ },
2685
+ {
2686
+ "epoch": 0.6,
2687
+ "learning_rate": 0.00018155142011654435,
2688
+ "loss": 0.6999,
2689
+ "step": 420
2690
+ },
2691
+ {
2692
+ "epoch": 0.6,
2693
+ "eval_loss": 0.5941495299339294,
2694
+ "eval_runtime": 29.3194,
2695
+ "eval_samples_per_second": 55.561,
2696
+ "eval_steps_per_second": 27.797,
2697
+ "step": 420
2698
+ },
2699
+ {
2700
+ "epoch": 0.6,
2701
+ "learning_rate": 0.0001814642095877387,
2702
+ "loss": 0.5381,
2703
+ "step": 421
2704
+ },
2705
+ {
2706
+ "epoch": 0.6,
2707
+ "learning_rate": 0.00018137681446321903,
2708
+ "loss": 0.7032,
2709
+ "step": 422
2710
+ },
2711
+ {
2712
+ "epoch": 0.61,
2713
+ "learning_rate": 0.00018128923494102028,
2714
+ "loss": 0.5898,
2715
+ "step": 423
2716
+ },
2717
+ {
2718
+ "epoch": 0.61,
2719
+ "learning_rate": 0.00018120147121959536,
2720
+ "loss": 0.4766,
2721
+ "step": 424
2722
+ },
2723
+ {
2724
+ "epoch": 0.61,
2725
+ "learning_rate": 0.0001811135234978145,
2726
+ "loss": 0.5916,
2727
+ "step": 425
2728
+ },
2729
+ {
2730
+ "epoch": 0.61,
2731
+ "learning_rate": 0.00018102539197496482,
2732
+ "loss": 0.5091,
2733
+ "step": 426
2734
+ },
2735
+ {
2736
+ "epoch": 0.61,
2737
+ "learning_rate": 0.00018093707685075004,
2738
+ "loss": 0.7035,
2739
+ "step": 427
2740
+ },
2741
+ {
2742
+ "epoch": 0.61,
2743
+ "learning_rate": 0.00018084857832528987,
2744
+ "loss": 0.7507,
2745
+ "step": 428
2746
+ },
2747
+ {
2748
+ "epoch": 0.61,
2749
+ "learning_rate": 0.00018075989659911956,
2750
+ "loss": 0.4905,
2751
+ "step": 429
2752
+ },
2753
+ {
2754
+ "epoch": 0.62,
2755
+ "learning_rate": 0.00018067103187318956,
2756
+ "loss": 0.5706,
2757
+ "step": 430
2758
+ },
2759
+ {
2760
+ "epoch": 0.62,
2761
+ "learning_rate": 0.00018058198434886492,
2762
+ "loss": 0.784,
2763
+ "step": 431
2764
+ },
2765
+ {
2766
+ "epoch": 0.62,
2767
+ "learning_rate": 0.00018049275422792497,
2768
+ "loss": 0.5877,
2769
+ "step": 432
2770
+ },
2771
+ {
2772
+ "epoch": 0.62,
2773
+ "learning_rate": 0.00018040334171256277,
2774
+ "loss": 0.6392,
2775
+ "step": 433
2776
+ },
2777
+ {
2778
+ "epoch": 0.62,
2779
+ "learning_rate": 0.00018031374700538467,
2780
+ "loss": 0.5623,
2781
+ "step": 434
2782
+ },
2783
+ {
2784
+ "epoch": 0.62,
2785
+ "learning_rate": 0.00018022397030940986,
2786
+ "loss": 0.6878,
2787
+ "step": 435
2788
+ },
2789
+ {
2790
+ "epoch": 0.62,
2791
+ "learning_rate": 0.00018013401182806994,
2792
+ "loss": 0.5297,
2793
+ "step": 436
2794
+ },
2795
+ {
2796
+ "epoch": 0.63,
2797
+ "learning_rate": 0.00018004387176520843,
2798
+ "loss": 0.4828,
2799
+ "step": 437
2800
+ },
2801
+ {
2802
+ "epoch": 0.63,
2803
+ "learning_rate": 0.00017995355032508027,
2804
+ "loss": 0.5836,
2805
+ "step": 438
2806
+ },
2807
+ {
2808
+ "epoch": 0.63,
2809
+ "learning_rate": 0.00017986304771235143,
2810
+ "loss": 0.5292,
2811
+ "step": 439
2812
+ },
2813
+ {
2814
+ "epoch": 0.63,
2815
+ "learning_rate": 0.0001797723641320984,
2816
+ "loss": 0.5173,
2817
+ "step": 440
2818
+ },
2819
+ {
2820
+ "epoch": 0.63,
2821
+ "eval_loss": 0.5887213349342346,
2822
+ "eval_runtime": 29.3237,
2823
+ "eval_samples_per_second": 55.552,
2824
+ "eval_steps_per_second": 27.793,
2825
+ "step": 440
2826
+ },
2827
+ {
2828
+ "epoch": 0.63,
2829
+ "learning_rate": 0.00017968149978980774,
2830
+ "loss": 0.6018,
2831
+ "step": 441
2832
+ },
2833
+ {
2834
+ "epoch": 0.63,
2835
+ "learning_rate": 0.00017959045489137566,
2836
+ "loss": 0.5353,
2837
+ "step": 442
2838
+ },
2839
+ {
2840
+ "epoch": 0.63,
2841
+ "learning_rate": 0.00017949922964310738,
2842
+ "loss": 0.7697,
2843
+ "step": 443
2844
+ },
2845
+ {
2846
+ "epoch": 0.64,
2847
+ "learning_rate": 0.00017940782425171693,
2848
+ "loss": 0.4775,
2849
+ "step": 444
2850
+ },
2851
+ {
2852
+ "epoch": 0.64,
2853
+ "learning_rate": 0.0001793162389243264,
2854
+ "loss": 0.6834,
2855
+ "step": 445
2856
+ },
2857
+ {
2858
+ "epoch": 0.64,
2859
+ "learning_rate": 0.00017922447386846578,
2860
+ "loss": 0.8259,
2861
+ "step": 446
2862
+ },
2863
+ {
2864
+ "epoch": 0.64,
2865
+ "learning_rate": 0.00017913252929207217,
2866
+ "loss": 0.7376,
2867
+ "step": 447
2868
+ },
2869
+ {
2870
+ "epoch": 0.64,
2871
+ "learning_rate": 0.0001790404054034895,
2872
+ "loss": 0.7481,
2873
+ "step": 448
2874
+ },
2875
+ {
2876
+ "epoch": 0.64,
2877
+ "learning_rate": 0.0001789481024114681,
2878
+ "loss": 0.8861,
2879
+ "step": 449
2880
+ },
2881
+ {
2882
+ "epoch": 0.64,
2883
+ "learning_rate": 0.00017885562052516398,
2884
+ "loss": 0.4938,
2885
+ "step": 450
2886
+ },
2887
+ {
2888
+ "epoch": 0.65,
2889
+ "learning_rate": 0.00017876295995413867,
2890
+ "loss": 0.5681,
2891
+ "step": 451
2892
+ },
2893
+ {
2894
+ "epoch": 0.65,
2895
+ "learning_rate": 0.00017867012090835854,
2896
+ "loss": 0.4892,
2897
+ "step": 452
2898
+ },
2899
+ {
2900
+ "epoch": 0.65,
2901
+ "learning_rate": 0.00017857710359819436,
2902
+ "loss": 0.6888,
2903
+ "step": 453
2904
+ },
2905
+ {
2906
+ "epoch": 0.65,
2907
+ "learning_rate": 0.00017848390823442086,
2908
+ "loss": 0.5947,
2909
+ "step": 454
2910
+ },
2911
+ {
2912
+ "epoch": 0.65,
2913
+ "learning_rate": 0.0001783905350282163,
2914
+ "loss": 0.7089,
2915
+ "step": 455
2916
+ },
2917
+ {
2918
+ "epoch": 0.65,
2919
+ "learning_rate": 0.00017829698419116177,
2920
+ "loss": 0.5473,
2921
+ "step": 456
2922
+ },
2923
+ {
2924
+ "epoch": 0.65,
2925
+ "learning_rate": 0.00017820325593524098,
2926
+ "loss": 0.6345,
2927
+ "step": 457
2928
+ },
2929
+ {
2930
+ "epoch": 0.66,
2931
+ "learning_rate": 0.00017810935047283966,
2932
+ "loss": 0.6343,
2933
+ "step": 458
2934
+ },
2935
+ {
2936
+ "epoch": 0.66,
2937
+ "learning_rate": 0.00017801526801674506,
2938
+ "loss": 0.5587,
2939
+ "step": 459
2940
+ },
2941
+ {
2942
+ "epoch": 0.66,
2943
+ "learning_rate": 0.00017792100878014552,
2944
+ "loss": 0.4201,
2945
+ "step": 460
2946
+ },
2947
+ {
2948
+ "epoch": 0.66,
2949
+ "eval_loss": 0.5952056646347046,
2950
+ "eval_runtime": 29.408,
2951
+ "eval_samples_per_second": 55.393,
2952
+ "eval_steps_per_second": 27.714,
2953
+ "step": 460
2954
+ },
2955
+ {
2956
+ "epoch": 0.66,
2957
+ "learning_rate": 0.00017782657297662992,
2958
+ "loss": 0.6726,
2959
+ "step": 461
2960
+ },
2961
+ {
2962
+ "epoch": 0.66,
2963
+ "learning_rate": 0.00017773196082018728,
2964
+ "loss": 0.5181,
2965
+ "step": 462
2966
+ },
2967
+ {
2968
+ "epoch": 0.66,
2969
+ "learning_rate": 0.0001776371725252062,
2970
+ "loss": 0.4734,
2971
+ "step": 463
2972
+ },
2973
+ {
2974
+ "epoch": 0.66,
2975
+ "learning_rate": 0.0001775422083064744,
2976
+ "loss": 0.5406,
2977
+ "step": 464
2978
+ },
2979
+ {
2980
+ "epoch": 0.67,
2981
+ "learning_rate": 0.00017744706837917828,
2982
+ "loss": 0.4941,
2983
+ "step": 465
2984
+ },
2985
+ {
2986
+ "epoch": 0.67,
2987
+ "learning_rate": 0.00017735175295890233,
2988
+ "loss": 0.5945,
2989
+ "step": 466
2990
+ },
2991
+ {
2992
+ "epoch": 0.67,
2993
+ "learning_rate": 0.00017725626226162874,
2994
+ "loss": 0.5451,
2995
+ "step": 467
2996
+ },
2997
+ {
2998
+ "epoch": 0.67,
2999
+ "learning_rate": 0.0001771605965037369,
3000
+ "loss": 0.6012,
3001
+ "step": 468
3002
+ },
3003
+ {
3004
+ "epoch": 0.67,
3005
+ "learning_rate": 0.00017706475590200285,
3006
+ "loss": 0.6645,
3007
+ "step": 469
3008
+ },
3009
+ {
3010
+ "epoch": 0.67,
3011
+ "learning_rate": 0.0001769687406735988,
3012
+ "loss": 0.8397,
3013
+ "step": 470
3014
+ },
3015
+ {
3016
+ "epoch": 0.67,
3017
+ "learning_rate": 0.00017687255103609266,
3018
+ "loss": 0.4745,
3019
+ "step": 471
3020
+ },
3021
+ {
3022
+ "epoch": 0.68,
3023
+ "learning_rate": 0.00017677618720744764,
3024
+ "loss": 0.9309,
3025
+ "step": 472
3026
+ },
3027
+ {
3028
+ "epoch": 0.68,
3029
+ "learning_rate": 0.0001766796494060215,
3030
+ "loss": 0.5752,
3031
+ "step": 473
3032
+ },
3033
+ {
3034
+ "epoch": 0.68,
3035
+ "learning_rate": 0.00017658293785056638,
3036
+ "loss": 0.846,
3037
+ "step": 474
3038
+ },
3039
+ {
3040
+ "epoch": 0.68,
3041
+ "learning_rate": 0.00017648605276022808,
3042
+ "loss": 0.4726,
3043
+ "step": 475
3044
+ },
3045
+ {
3046
+ "epoch": 0.68,
3047
+ "learning_rate": 0.00017638899435454554,
3048
+ "loss": 0.5713,
3049
+ "step": 476
3050
+ },
3051
+ {
3052
+ "epoch": 0.68,
3053
+ "learning_rate": 0.0001762917628534506,
3054
+ "loss": 0.5512,
3055
+ "step": 477
3056
+ },
3057
+ {
3058
+ "epoch": 0.68,
3059
+ "learning_rate": 0.00017619435847726712,
3060
+ "loss": 0.538,
3061
+ "step": 478
3062
+ },
3063
+ {
3064
+ "epoch": 0.69,
3065
+ "learning_rate": 0.00017609678144671093,
3066
+ "loss": 0.5254,
3067
+ "step": 479
3068
+ },
3069
+ {
3070
+ "epoch": 0.69,
3071
+ "learning_rate": 0.00017599903198288886,
3072
+ "loss": 0.667,
3073
+ "step": 480
3074
+ },
3075
+ {
3076
+ "epoch": 0.69,
3077
+ "eval_loss": 0.5801939964294434,
3078
+ "eval_runtime": 29.3619,
3079
+ "eval_samples_per_second": 55.48,
3080
+ "eval_steps_per_second": 27.757,
3081
+ "step": 480
3082
+ },
3083
+ {
3084
+ "epoch": 0.69,
3085
+ "learning_rate": 0.00017590111030729862,
3086
+ "loss": 0.8356,
3087
+ "step": 481
3088
+ },
3089
+ {
3090
+ "epoch": 0.69,
3091
+ "learning_rate": 0.00017580301664182812,
3092
+ "loss": 0.6087,
3093
+ "step": 482
3094
+ },
3095
+ {
3096
+ "epoch": 0.69,
3097
+ "learning_rate": 0.00017570475120875495,
3098
+ "loss": 0.5965,
3099
+ "step": 483
3100
+ },
3101
+ {
3102
+ "epoch": 0.69,
3103
+ "learning_rate": 0.00017560631423074591,
3104
+ "loss": 0.5231,
3105
+ "step": 484
3106
+ },
3107
+ {
3108
+ "epoch": 0.69,
3109
+ "learning_rate": 0.00017550770593085662,
3110
+ "loss": 0.595,
3111
+ "step": 485
3112
+ },
3113
+ {
3114
+ "epoch": 0.7,
3115
+ "learning_rate": 0.0001754089265325308,
3116
+ "loss": 0.5015,
3117
+ "step": 486
3118
+ },
3119
+ {
3120
+ "epoch": 0.7,
3121
+ "learning_rate": 0.00017530997625959992,
3122
+ "loss": 0.4863,
3123
+ "step": 487
3124
+ },
3125
+ {
3126
+ "epoch": 0.7,
3127
+ "learning_rate": 0.00017521085533628265,
3128
+ "loss": 0.7477,
3129
+ "step": 488
3130
+ },
3131
+ {
3132
+ "epoch": 0.7,
3133
+ "learning_rate": 0.00017511156398718439,
3134
+ "loss": 0.5633,
3135
+ "step": 489
3136
+ },
3137
+ {
3138
+ "epoch": 0.7,
3139
+ "learning_rate": 0.0001750121024372966,
3140
+ "loss": 0.6316,
3141
+ "step": 490
3142
+ },
3143
+ {
3144
+ "epoch": 0.7,
3145
+ "learning_rate": 0.0001749124709119965,
3146
+ "loss": 0.4627,
3147
+ "step": 491
3148
+ },
3149
+ {
3150
+ "epoch": 0.7,
3151
+ "learning_rate": 0.0001748126696370465,
3152
+ "loss": 0.662,
3153
+ "step": 492
3154
+ },
3155
+ {
3156
+ "epoch": 0.71,
3157
+ "learning_rate": 0.00017471269883859356,
3158
+ "loss": 0.6426,
3159
+ "step": 493
3160
+ },
3161
+ {
3162
+ "epoch": 0.71,
3163
+ "learning_rate": 0.00017461255874316885,
3164
+ "loss": 0.6185,
3165
+ "step": 494
3166
+ },
3167
+ {
3168
+ "epoch": 0.71,
3169
+ "learning_rate": 0.00017451224957768717,
3170
+ "loss": 0.6106,
3171
+ "step": 495
3172
+ },
3173
+ {
3174
+ "epoch": 0.71,
3175
+ "learning_rate": 0.00017441177156944635,
3176
+ "loss": 0.7092,
3177
+ "step": 496
3178
+ },
3179
+ {
3180
+ "epoch": 0.71,
3181
+ "learning_rate": 0.0001743111249461269,
3182
+ "loss": 0.816,
3183
+ "step": 497
3184
+ },
3185
+ {
3186
+ "epoch": 0.71,
3187
+ "learning_rate": 0.00017421030993579133,
3188
+ "loss": 0.8185,
3189
+ "step": 498
3190
+ },
3191
+ {
3192
+ "epoch": 0.71,
3193
+ "learning_rate": 0.00017410932676688377,
3194
+ "loss": 0.4779,
3195
+ "step": 499
3196
+ },
3197
+ {
3198
+ "epoch": 0.72,
3199
+ "learning_rate": 0.00017400817566822938,
3200
+ "loss": 0.8568,
3201
+ "step": 500
3202
+ },
3203
+ {
3204
+ "epoch": 0.72,
3205
+ "eval_loss": 0.5921781063079834,
3206
+ "eval_runtime": 29.3482,
3207
+ "eval_samples_per_second": 55.506,
3208
+ "eval_steps_per_second": 27.77,
3209
+ "step": 500
3210
+ },
3211
+ {
3212
+ "epoch": 0.72,
3213
+ "learning_rate": 0.0001739068568690338,
3214
+ "loss": 0.6461,
3215
+ "step": 501
3216
+ },
3217
+ {
3218
+ "epoch": 0.72,
3219
+ "learning_rate": 0.00017380537059888277,
3220
+ "loss": 0.6208,
3221
+ "step": 502
3222
+ },
3223
+ {
3224
+ "epoch": 0.72,
3225
+ "learning_rate": 0.00017370371708774141,
3226
+ "loss": 0.5665,
3227
+ "step": 503
3228
+ },
3229
+ {
3230
+ "epoch": 0.72,
3231
+ "learning_rate": 0.0001736018965659539,
3232
+ "loss": 0.5903,
3233
+ "step": 504
3234
+ },
3235
+ {
3236
+ "epoch": 0.72,
3237
+ "learning_rate": 0.00017349990926424273,
3238
+ "loss": 0.5639,
3239
+ "step": 505
3240
+ },
3241
+ {
3242
+ "epoch": 0.72,
3243
+ "learning_rate": 0.0001733977554137085,
3244
+ "loss": 0.5138,
3245
+ "step": 506
3246
+ },
3247
+ {
3248
+ "epoch": 0.73,
3249
+ "learning_rate": 0.00017329543524582898,
3250
+ "loss": 0.5628,
3251
+ "step": 507
3252
+ },
3253
+ {
3254
+ "epoch": 0.73,
3255
+ "learning_rate": 0.000173192948992459,
3256
+ "loss": 0.3835,
3257
+ "step": 508
3258
+ },
3259
+ {
3260
+ "epoch": 0.73,
3261
+ "learning_rate": 0.00017309029688582963,
3262
+ "loss": 0.6234,
3263
+ "step": 509
3264
+ },
3265
+ {
3266
+ "epoch": 0.73,
3267
+ "learning_rate": 0.00017298747915854782,
3268
+ "loss": 0.86,
3269
+ "step": 510
3270
+ },
3271
+ {
3272
+ "epoch": 0.73,
3273
+ "learning_rate": 0.00017288449604359576,
3274
+ "loss": 0.7151,
3275
+ "step": 511
3276
+ },
3277
+ {
3278
+ "epoch": 0.73,
3279
+ "learning_rate": 0.00017278134777433044,
3280
+ "loss": 0.554,
3281
+ "step": 512
3282
+ },
3283
+ {
3284
+ "epoch": 0.73,
3285
+ "learning_rate": 0.00017267803458448307,
3286
+ "loss": 0.583,
3287
+ "step": 513
3288
+ },
3289
+ {
3290
+ "epoch": 0.74,
3291
+ "learning_rate": 0.00017257455670815854,
3292
+ "loss": 0.5642,
3293
+ "step": 514
3294
+ },
3295
+ {
3296
+ "epoch": 0.74,
3297
+ "learning_rate": 0.00017247091437983496,
3298
+ "loss": 1.0091,
3299
+ "step": 515
3300
+ },
3301
+ {
3302
+ "epoch": 0.74,
3303
+ "learning_rate": 0.00017236710783436306,
3304
+ "loss": 0.5834,
3305
+ "step": 516
3306
+ },
3307
+ {
3308
+ "epoch": 0.74,
3309
+ "learning_rate": 0.00017226313730696574,
3310
+ "loss": 0.6862,
3311
+ "step": 517
3312
+ },
3313
+ {
3314
+ "epoch": 0.74,
3315
+ "learning_rate": 0.00017215900303323736,
3316
+ "loss": 0.4787,
3317
+ "step": 518
3318
+ },
3319
+ {
3320
+ "epoch": 0.74,
3321
+ "learning_rate": 0.00017205470524914342,
3322
+ "loss": 0.4951,
3323
+ "step": 519
3324
+ },
3325
+ {
3326
+ "epoch": 0.74,
3327
+ "learning_rate": 0.00017195024419101987,
3328
+ "loss": 0.515,
3329
+ "step": 520
3330
+ },
3331
+ {
3332
+ "epoch": 0.74,
3333
+ "eval_loss": 0.5800089836120605,
3334
+ "eval_runtime": 29.3282,
3335
+ "eval_samples_per_second": 55.544,
3336
+ "eval_steps_per_second": 27.789,
3337
+ "step": 520
3338
+ },
3339
+ {
3340
+ "epoch": 0.75,
3341
+ "learning_rate": 0.00017184562009557271,
3342
+ "loss": 0.6123,
3343
+ "step": 521
3344
+ },
3345
+ {
3346
+ "epoch": 0.75,
3347
+ "learning_rate": 0.00017174083319987732,
3348
+ "loss": 0.6898,
3349
+ "step": 522
3350
+ },
3351
+ {
3352
+ "epoch": 0.75,
3353
+ "learning_rate": 0.000171635883741378,
3354
+ "loss": 0.487,
3355
+ "step": 523
3356
+ },
3357
+ {
3358
+ "epoch": 0.75,
3359
+ "learning_rate": 0.0001715307719578874,
3360
+ "loss": 0.6113,
3361
+ "step": 524
3362
+ },
3363
+ {
3364
+ "epoch": 0.75,
3365
+ "learning_rate": 0.000171425498087586,
3366
+ "loss": 0.4276,
3367
+ "step": 525
3368
+ },
3369
+ {
3370
+ "epoch": 0.75,
3371
+ "learning_rate": 0.00017132006236902155,
3372
+ "loss": 0.5996,
3373
+ "step": 526
3374
+ },
3375
+ {
3376
+ "epoch": 0.75,
3377
+ "learning_rate": 0.00017121446504110859,
3378
+ "loss": 0.564,
3379
+ "step": 527
3380
+ },
3381
+ {
3382
+ "epoch": 0.76,
3383
+ "learning_rate": 0.00017110870634312784,
3384
+ "loss": 0.8961,
3385
+ "step": 528
3386
+ },
3387
+ {
3388
+ "epoch": 0.76,
3389
+ "learning_rate": 0.00017100278651472562,
3390
+ "loss": 0.4929,
3391
+ "step": 529
3392
+ },
3393
+ {
3394
+ "epoch": 0.76,
3395
+ "learning_rate": 0.0001708967057959135,
3396
+ "loss": 0.5149,
3397
+ "step": 530
3398
+ },
3399
+ {
3400
+ "epoch": 0.76,
3401
+ "learning_rate": 0.00017079046442706748,
3402
+ "loss": 0.4424,
3403
+ "step": 531
3404
+ },
3405
+ {
3406
+ "epoch": 0.76,
3407
+ "learning_rate": 0.00017068406264892768,
3408
+ "loss": 1.0212,
3409
+ "step": 532
3410
+ },
3411
+ {
3412
+ "epoch": 0.76,
3413
+ "learning_rate": 0.00017057750070259765,
3414
+ "loss": 0.4541,
3415
+ "step": 533
3416
+ },
3417
+ {
3418
+ "epoch": 0.76,
3419
+ "learning_rate": 0.00017047077882954392,
3420
+ "loss": 0.7563,
3421
+ "step": 534
3422
+ },
3423
+ {
3424
+ "epoch": 0.77,
3425
+ "learning_rate": 0.0001703638972715954,
3426
+ "loss": 0.644,
3427
+ "step": 535
3428
+ },
3429
+ {
3430
+ "epoch": 0.77,
3431
+ "learning_rate": 0.00017025685627094283,
3432
+ "loss": 0.4545,
3433
+ "step": 536
3434
+ },
3435
+ {
3436
+ "epoch": 0.77,
3437
+ "learning_rate": 0.00017014965607013824,
3438
+ "loss": 0.61,
3439
+ "step": 537
3440
+ },
3441
+ {
3442
+ "epoch": 0.77,
3443
+ "learning_rate": 0.0001700422969120944,
3444
+ "loss": 0.6925,
3445
+ "step": 538
3446
+ },
3447
+ {
3448
+ "epoch": 0.77,
3449
+ "learning_rate": 0.00016993477904008432,
3450
+ "loss": 0.4985,
3451
+ "step": 539
3452
+ },
3453
+ {
3454
+ "epoch": 0.77,
3455
+ "learning_rate": 0.00016982710269774058,
3456
+ "loss": 0.504,
3457
+ "step": 540
3458
+ },
3459
+ {
3460
+ "epoch": 0.77,
3461
+ "eval_loss": 0.5893893241882324,
3462
+ "eval_runtime": 29.3252,
3463
+ "eval_samples_per_second": 55.55,
3464
+ "eval_steps_per_second": 27.792,
3465
+ "step": 540
3466
+ },
3467
+ {
3468
+ "epoch": 0.77,
3469
+ "learning_rate": 0.00016971926812905488,
3470
+ "loss": 0.3721,
3471
+ "step": 541
3472
+ },
3473
+ {
3474
+ "epoch": 0.78,
3475
+ "learning_rate": 0.00016961127557837751,
3476
+ "loss": 0.5396,
3477
+ "step": 542
3478
+ },
3479
+ {
3480
+ "epoch": 0.78,
3481
+ "learning_rate": 0.00016950312529041663,
3482
+ "loss": 0.4731,
3483
+ "step": 543
3484
+ },
3485
+ {
3486
+ "epoch": 0.78,
3487
+ "learning_rate": 0.0001693948175102379,
3488
+ "loss": 0.5411,
3489
+ "step": 544
3490
+ },
3491
+ {
3492
+ "epoch": 0.78,
3493
+ "learning_rate": 0.0001692863524832639,
3494
+ "loss": 0.6364,
3495
+ "step": 545
3496
+ },
3497
+ {
3498
+ "epoch": 0.78,
3499
+ "learning_rate": 0.00016917773045527343,
3500
+ "loss": 0.5857,
3501
+ "step": 546
3502
+ },
3503
+ {
3504
+ "epoch": 0.78,
3505
+ "learning_rate": 0.00016906895167240112,
3506
+ "loss": 0.7359,
3507
+ "step": 547
3508
+ },
3509
+ {
3510
+ "epoch": 0.78,
3511
+ "learning_rate": 0.0001689600163811367,
3512
+ "loss": 0.5994,
3513
+ "step": 548
3514
+ },
3515
+ {
3516
+ "epoch": 0.79,
3517
+ "learning_rate": 0.0001688509248283247,
3518
+ "loss": 0.5892,
3519
+ "step": 549
3520
+ },
3521
+ {
3522
+ "epoch": 0.79,
3523
+ "learning_rate": 0.00016874167726116363,
3524
+ "loss": 0.7209,
3525
+ "step": 550
3526
+ },
3527
+ {
3528
+ "epoch": 0.79,
3529
+ "learning_rate": 0.00016863227392720554,
3530
+ "loss": 0.5054,
3531
+ "step": 551
3532
+ },
3533
+ {
3534
+ "epoch": 0.79,
3535
+ "learning_rate": 0.00016852271507435544,
3536
+ "loss": 0.5956,
3537
+ "step": 552
3538
+ },
3539
+ {
3540
+ "epoch": 0.79,
3541
+ "learning_rate": 0.00016841300095087077,
3542
+ "loss": 0.5568,
3543
+ "step": 553
3544
+ },
3545
+ {
3546
+ "epoch": 0.79,
3547
+ "learning_rate": 0.00016830313180536078,
3548
+ "loss": 0.6406,
3549
+ "step": 554
3550
+ },
3551
+ {
3552
+ "epoch": 0.79,
3553
+ "learning_rate": 0.00016819310788678603,
3554
+ "loss": 0.6066,
3555
+ "step": 555
3556
+ },
3557
+ {
3558
+ "epoch": 0.8,
3559
+ "learning_rate": 0.00016808292944445774,
3560
+ "loss": 0.4708,
3561
+ "step": 556
3562
+ },
3563
+ {
3564
+ "epoch": 0.8,
3565
+ "learning_rate": 0.0001679725967280373,
3566
+ "loss": 0.6026,
3567
+ "step": 557
3568
+ },
3569
+ {
3570
+ "epoch": 0.8,
3571
+ "learning_rate": 0.00016786210998753575,
3572
+ "loss": 0.8752,
3573
+ "step": 558
3574
+ },
3575
+ {
3576
+ "epoch": 0.8,
3577
+ "learning_rate": 0.00016775146947331298,
3578
+ "loss": 0.7405,
3579
+ "step": 559
3580
+ },
3581
+ {
3582
+ "epoch": 0.8,
3583
+ "learning_rate": 0.00016764067543607753,
3584
+ "loss": 0.6361,
3585
+ "step": 560
3586
+ },
3587
+ {
3588
+ "epoch": 0.8,
3589
+ "eval_loss": 0.5982840657234192,
3590
+ "eval_runtime": 29.3385,
3591
+ "eval_samples_per_second": 55.524,
3592
+ "eval_steps_per_second": 27.779,
3593
+ "step": 560
3594
+ },
3595
+ {
3596
+ "epoch": 0.8,
3597
+ "learning_rate": 0.00016752972812688564,
3598
+ "loss": 0.6528,
3599
+ "step": 561
3600
+ },
3601
+ {
3602
+ "epoch": 0.8,
3603
+ "learning_rate": 0.00016741862779714098,
3604
+ "loss": 0.5128,
3605
+ "step": 562
3606
+ },
3607
+ {
3608
+ "epoch": 0.81,
3609
+ "learning_rate": 0.00016730737469859388,
3610
+ "loss": 0.723,
3611
+ "step": 563
3612
+ },
3613
+ {
3614
+ "epoch": 0.81,
3615
+ "learning_rate": 0.00016719596908334092,
3616
+ "loss": 0.5223,
3617
+ "step": 564
3618
+ },
3619
+ {
3620
+ "epoch": 0.81,
3621
+ "learning_rate": 0.0001670844112038242,
3622
+ "loss": 0.5353,
3623
+ "step": 565
3624
+ },
3625
+ {
3626
+ "epoch": 0.81,
3627
+ "learning_rate": 0.0001669727013128309,
3628
+ "loss": 0.7645,
3629
+ "step": 566
3630
+ },
3631
+ {
3632
+ "epoch": 0.81,
3633
+ "learning_rate": 0.00016686083966349266,
3634
+ "loss": 0.6167,
3635
+ "step": 567
3636
+ },
3637
+ {
3638
+ "epoch": 0.81,
3639
+ "learning_rate": 0.00016674882650928493,
3640
+ "loss": 0.3836,
3641
+ "step": 568
3642
+ },
3643
+ {
3644
+ "epoch": 0.81,
3645
+ "learning_rate": 0.00016663666210402656,
3646
+ "loss": 0.6045,
3647
+ "step": 569
3648
+ },
3649
+ {
3650
+ "epoch": 0.82,
3651
+ "learning_rate": 0.00016652434670187907,
3652
+ "loss": 0.5973,
3653
+ "step": 570
3654
+ },
3655
+ {
3656
+ "epoch": 0.82,
3657
+ "learning_rate": 0.0001664118805573461,
3658
+ "loss": 0.5661,
3659
+ "step": 571
3660
+ },
3661
+ {
3662
+ "epoch": 0.82,
3663
+ "learning_rate": 0.000166299263925273,
3664
+ "loss": 0.4528,
3665
+ "step": 572
3666
+ },
3667
+ {
3668
+ "epoch": 0.82,
3669
+ "learning_rate": 0.00016618649706084596,
3670
+ "loss": 0.6458,
3671
+ "step": 573
3672
+ },
3673
+ {
3674
+ "epoch": 0.82,
3675
+ "learning_rate": 0.00016607358021959173,
3676
+ "loss": 0.412,
3677
+ "step": 574
3678
+ },
3679
+ {
3680
+ "epoch": 0.82,
3681
+ "learning_rate": 0.0001659605136573768,
3682
+ "loss": 0.5031,
3683
+ "step": 575
3684
+ },
3685
+ {
3686
+ "epoch": 0.82,
3687
+ "learning_rate": 0.00016584729763040697,
3688
+ "loss": 0.4902,
3689
+ "step": 576
3690
+ },
3691
+ {
3692
+ "epoch": 0.83,
3693
+ "learning_rate": 0.00016573393239522678,
3694
+ "loss": 0.8064,
3695
+ "step": 577
3696
+ },
3697
+ {
3698
+ "epoch": 0.83,
3699
+ "learning_rate": 0.00016562041820871874,
3700
+ "loss": 0.5497,
3701
+ "step": 578
3702
+ },
3703
+ {
3704
+ "epoch": 0.83,
3705
+ "learning_rate": 0.000165506755328103,
3706
+ "loss": 0.6602,
3707
+ "step": 579
3708
+ },
3709
+ {
3710
+ "epoch": 0.83,
3711
+ "learning_rate": 0.00016539294401093658,
3712
+ "loss": 0.4896,
3713
+ "step": 580
3714
+ },
3715
+ {
3716
+ "epoch": 0.83,
3717
+ "eval_loss": 0.5770359039306641,
3718
+ "eval_runtime": 29.3487,
3719
+ "eval_samples_per_second": 55.505,
3720
+ "eval_steps_per_second": 27.77,
3721
+ "step": 580
3722
+ },
3723
+ {
3724
+ "epoch": 0.83,
3725
+ "learning_rate": 0.00016527898451511287,
3726
+ "loss": 0.3522,
3727
+ "step": 581
3728
+ },
3729
+ {
3730
+ "epoch": 0.83,
3731
+ "learning_rate": 0.00016516487709886105,
3732
+ "loss": 0.6396,
3733
+ "step": 582
3734
+ },
3735
+ {
3736
+ "epoch": 0.83,
3737
+ "learning_rate": 0.0001650506220207454,
3738
+ "loss": 0.8431,
3739
+ "step": 583
3740
+ },
3741
+ {
3742
+ "epoch": 0.84,
3743
+ "learning_rate": 0.00016493621953966495,
3744
+ "loss": 0.5146,
3745
+ "step": 584
3746
+ },
3747
+ {
3748
+ "epoch": 0.84,
3749
+ "learning_rate": 0.00016482166991485265,
3750
+ "loss": 0.5748,
3751
+ "step": 585
3752
+ },
3753
+ {
3754
+ "epoch": 0.84,
3755
+ "learning_rate": 0.00016470697340587476,
3756
+ "loss": 0.5961,
3757
+ "step": 586
3758
+ },
3759
+ {
3760
+ "epoch": 0.84,
3761
+ "learning_rate": 0.00016459213027263063,
3762
+ "loss": 0.5165,
3763
+ "step": 587
3764
+ },
3765
+ {
3766
+ "epoch": 0.84,
3767
+ "learning_rate": 0.00016447714077535167,
3768
+ "loss": 0.8974,
3769
+ "step": 588
3770
+ },
3771
+ {
3772
+ "epoch": 0.84,
3773
+ "learning_rate": 0.000164362005174601,
3774
+ "loss": 0.839,
3775
+ "step": 589
3776
+ },
3777
+ {
3778
+ "epoch": 0.84,
3779
+ "learning_rate": 0.00016424672373127277,
3780
+ "loss": 0.5579,
3781
+ "step": 590
3782
+ },
3783
+ {
3784
+ "epoch": 0.85,
3785
+ "learning_rate": 0.00016413129670659167,
3786
+ "loss": 0.832,
3787
+ "step": 591
3788
+ },
3789
+ {
3790
+ "epoch": 0.85,
3791
+ "learning_rate": 0.00016401572436211222,
3792
+ "loss": 0.7778,
3793
+ "step": 592
3794
+ },
3795
+ {
3796
+ "epoch": 0.85,
3797
+ "learning_rate": 0.0001639000069597183,
3798
+ "loss": 0.4416,
3799
+ "step": 593
3800
+ },
3801
+ {
3802
+ "epoch": 0.85,
3803
+ "learning_rate": 0.0001637841447616224,
3804
+ "loss": 0.4954,
3805
+ "step": 594
3806
+ },
3807
+ {
3808
+ "epoch": 0.85,
3809
+ "learning_rate": 0.0001636681380303652,
3810
+ "loss": 0.487,
3811
+ "step": 595
3812
+ },
3813
+ {
3814
+ "epoch": 0.85,
3815
+ "learning_rate": 0.00016355198702881478,
3816
+ "loss": 0.6773,
3817
+ "step": 596
3818
+ },
3819
+ {
3820
+ "epoch": 0.85,
3821
+ "learning_rate": 0.0001634356920201662,
3822
+ "loss": 0.5598,
3823
+ "step": 597
3824
+ },
3825
+ {
3826
+ "epoch": 0.86,
3827
+ "learning_rate": 0.00016331925326794087,
3828
+ "loss": 0.4758,
3829
+ "step": 598
3830
+ },
3831
+ {
3832
+ "epoch": 0.86,
3833
+ "learning_rate": 0.00016320267103598585,
3834
+ "loss": 0.5392,
3835
+ "step": 599
3836
+ },
3837
+ {
3838
+ "epoch": 0.86,
3839
+ "learning_rate": 0.00016308594558847337,
3840
+ "loss": 0.6044,
3841
+ "step": 600
3842
+ },
3843
+ {
3844
+ "epoch": 0.86,
3845
+ "eval_loss": 0.5716915726661682,
3846
+ "eval_runtime": 29.3528,
3847
+ "eval_samples_per_second": 55.497,
3848
+ "eval_steps_per_second": 27.766,
3849
+ "step": 600
3850
+ },
3851
+ {
3852
+ "epoch": 0.86,
3853
+ "learning_rate": 0.00016296907718990015,
3854
+ "loss": 0.543,
3855
+ "step": 601
3856
+ },
3857
+ {
3858
+ "epoch": 0.86,
3859
+ "learning_rate": 0.00016285206610508685,
3860
+ "loss": 0.677,
3861
+ "step": 602
3862
+ },
3863
+ {
3864
+ "epoch": 0.86,
3865
+ "learning_rate": 0.00016273491259917745,
3866
+ "loss": 0.8737,
3867
+ "step": 603
3868
+ },
3869
+ {
3870
+ "epoch": 0.86,
3871
+ "learning_rate": 0.0001626176169376387,
3872
+ "loss": 0.6001,
3873
+ "step": 604
3874
+ },
3875
+ {
3876
+ "epoch": 0.87,
3877
+ "learning_rate": 0.0001625001793862593,
3878
+ "loss": 0.6186,
3879
+ "step": 605
3880
+ },
3881
+ {
3882
+ "epoch": 0.87,
3883
+ "learning_rate": 0.0001623826002111497,
3884
+ "loss": 0.6821,
3885
+ "step": 606
3886
+ },
3887
+ {
3888
+ "epoch": 0.87,
3889
+ "learning_rate": 0.00016226487967874116,
3890
+ "loss": 0.4421,
3891
+ "step": 607
3892
+ },
3893
+ {
3894
+ "epoch": 0.87,
3895
+ "learning_rate": 0.00016214701805578518,
3896
+ "loss": 0.5087,
3897
+ "step": 608
3898
+ },
3899
+ {
3900
+ "epoch": 0.87,
3901
+ "learning_rate": 0.0001620290156093531,
3902
+ "loss": 0.465,
3903
+ "step": 609
3904
+ },
3905
+ {
3906
+ "epoch": 0.87,
3907
+ "learning_rate": 0.00016191087260683523,
3908
+ "loss": 0.5147,
3909
+ "step": 610
3910
+ },
3911
+ {
3912
+ "epoch": 0.87,
3913
+ "learning_rate": 0.00016179258931594051,
3914
+ "loss": 0.6099,
3915
+ "step": 611
3916
+ },
3917
+ {
3918
+ "epoch": 0.88,
3919
+ "learning_rate": 0.0001616741660046957,
3920
+ "loss": 0.6062,
3921
+ "step": 612
3922
+ },
3923
+ {
3924
+ "epoch": 0.88,
3925
+ "learning_rate": 0.00016155560294144479,
3926
+ "loss": 0.5735,
3927
+ "step": 613
3928
+ },
3929
+ {
3930
+ "epoch": 0.88,
3931
+ "learning_rate": 0.00016143690039484857,
3932
+ "loss": 0.6008,
3933
+ "step": 614
3934
+ },
3935
+ {
3936
+ "epoch": 0.88,
3937
+ "learning_rate": 0.00016131805863388378,
3938
+ "loss": 0.6302,
3939
+ "step": 615
3940
+ },
3941
+ {
3942
+ "epoch": 0.88,
3943
+ "learning_rate": 0.00016119907792784267,
3944
+ "loss": 0.5624,
3945
+ "step": 616
3946
+ },
3947
+ {
3948
+ "epoch": 0.88,
3949
+ "learning_rate": 0.00016107995854633235,
3950
+ "loss": 0.5803,
3951
+ "step": 617
3952
+ },
3953
+ {
3954
+ "epoch": 0.88,
3955
+ "learning_rate": 0.00016096070075927415,
3956
+ "loss": 0.5977,
3957
+ "step": 618
3958
+ },
3959
+ {
3960
+ "epoch": 0.89,
3961
+ "learning_rate": 0.00016084130483690295,
3962
+ "loss": 0.4958,
3963
+ "step": 619
3964
+ },
3965
+ {
3966
+ "epoch": 0.89,
3967
+ "learning_rate": 0.0001607217710497668,
3968
+ "loss": 0.4925,
3969
+ "step": 620
3970
+ },
3971
+ {
3972
+ "epoch": 0.89,
3973
+ "eval_loss": 0.5715158581733704,
3974
+ "eval_runtime": 29.3023,
3975
+ "eval_samples_per_second": 55.593,
3976
+ "eval_steps_per_second": 27.813,
3977
+ "step": 620
3978
+ },
3979
+ {
3980
+ "epoch": 0.89,
3981
+ "learning_rate": 0.000160602099668726,
3982
+ "loss": 0.641,
3983
+ "step": 621
3984
+ },
3985
+ {
3986
+ "epoch": 0.89,
3987
+ "learning_rate": 0.00016048229096495272,
3988
+ "loss": 0.5944,
3989
+ "step": 622
3990
+ },
3991
+ {
3992
+ "epoch": 0.89,
3993
+ "learning_rate": 0.00016036234520993024,
3994
+ "loss": 0.655,
3995
+ "step": 623
3996
+ },
3997
+ {
3998
+ "epoch": 0.89,
3999
+ "learning_rate": 0.0001602422626754524,
4000
+ "loss": 0.3301,
4001
+ "step": 624
4002
+ },
4003
+ {
4004
+ "epoch": 0.89,
4005
+ "learning_rate": 0.0001601220436336231,
4006
+ "loss": 0.6563,
4007
+ "step": 625
4008
+ },
4009
+ {
4010
+ "epoch": 0.9,
4011
+ "learning_rate": 0.00016000168835685535,
4012
+ "loss": 0.6173,
4013
+ "step": 626
4014
+ },
4015
+ {
4016
+ "epoch": 0.9,
4017
+ "learning_rate": 0.00015988119711787105,
4018
+ "loss": 0.7029,
4019
+ "step": 627
4020
+ },
4021
+ {
4022
+ "epoch": 0.9,
4023
+ "learning_rate": 0.0001597605701897001,
4024
+ "loss": 0.7588,
4025
+ "step": 628
4026
+ },
4027
+ {
4028
+ "epoch": 0.9,
4029
+ "learning_rate": 0.00015963980784567986,
4030
+ "loss": 0.527,
4031
+ "step": 629
4032
+ },
4033
+ {
4034
+ "epoch": 0.9,
4035
+ "learning_rate": 0.00015951891035945464,
4036
+ "loss": 0.6378,
4037
+ "step": 630
4038
+ },
4039
+ {
4040
+ "epoch": 0.9,
4041
+ "learning_rate": 0.0001593978780049748,
4042
+ "loss": 0.5056,
4043
+ "step": 631
4044
+ },
4045
+ {
4046
+ "epoch": 0.9,
4047
+ "learning_rate": 0.00015927671105649648,
4048
+ "loss": 0.6517,
4049
+ "step": 632
4050
+ },
4051
+ {
4052
+ "epoch": 0.91,
4053
+ "learning_rate": 0.00015915540978858066,
4054
+ "loss": 1.0716,
4055
+ "step": 633
4056
+ },
4057
+ {
4058
+ "epoch": 0.91,
4059
+ "learning_rate": 0.00015903397447609288,
4060
+ "loss": 0.5948,
4061
+ "step": 634
4062
+ },
4063
+ {
4064
+ "epoch": 0.91,
4065
+ "learning_rate": 0.0001589124053942022,
4066
+ "loss": 0.4883,
4067
+ "step": 635
4068
+ },
4069
+ {
4070
+ "epoch": 0.91,
4071
+ "learning_rate": 0.0001587907028183809,
4072
+ "loss": 0.5172,
4073
+ "step": 636
4074
+ },
4075
+ {
4076
+ "epoch": 0.91,
4077
+ "learning_rate": 0.00015866886702440384,
4078
+ "loss": 0.4618,
4079
+ "step": 637
4080
+ },
4081
+ {
4082
+ "epoch": 0.91,
4083
+ "learning_rate": 0.00015854689828834757,
4084
+ "loss": 0.7591,
4085
+ "step": 638
4086
+ },
4087
+ {
4088
+ "epoch": 0.91,
4089
+ "learning_rate": 0.00015842479688659003,
4090
+ "loss": 0.435,
4091
+ "step": 639
4092
+ },
4093
+ {
4094
+ "epoch": 0.92,
4095
+ "learning_rate": 0.00015830256309580968,
4096
+ "loss": 0.4704,
4097
+ "step": 640
4098
+ },
4099
+ {
4100
+ "epoch": 0.92,
4101
+ "eval_loss": 0.5707182288169861,
4102
+ "eval_runtime": 29.3397,
4103
+ "eval_samples_per_second": 55.522,
4104
+ "eval_steps_per_second": 27.778,
4105
+ "step": 640
4106
+ },
4107
+ {
4108
+ "epoch": 0.92,
4109
+ "learning_rate": 0.00015818019719298504,
4110
+ "loss": 0.6049,
4111
+ "step": 641
4112
+ },
4113
+ {
4114
+ "epoch": 0.92,
4115
+ "learning_rate": 0.00015805769945539394,
4116
+ "loss": 0.5501,
4117
+ "step": 642
4118
+ },
4119
+ {
4120
+ "epoch": 0.92,
4121
+ "learning_rate": 0.00015793507016061305,
4122
+ "loss": 0.7212,
4123
+ "step": 643
4124
+ },
4125
+ {
4126
+ "epoch": 0.92,
4127
+ "learning_rate": 0.00015781230958651694,
4128
+ "loss": 0.6531,
4129
+ "step": 644
4130
+ },
4131
+ {
4132
+ "epoch": 0.92,
4133
+ "learning_rate": 0.00015768941801127783,
4134
+ "loss": 0.9526,
4135
+ "step": 645
4136
+ },
4137
+ {
4138
+ "epoch": 0.92,
4139
+ "learning_rate": 0.00015756639571336476,
4140
+ "loss": 0.5878,
4141
+ "step": 646
4142
+ },
4143
+ {
4144
+ "epoch": 0.93,
4145
+ "learning_rate": 0.00015744324297154293,
4146
+ "loss": 0.46,
4147
+ "step": 647
4148
+ },
4149
+ {
4150
+ "epoch": 0.93,
4151
+ "learning_rate": 0.00015731996006487317,
4152
+ "loss": 0.4893,
4153
+ "step": 648
4154
+ },
4155
+ {
4156
+ "epoch": 0.93,
4157
+ "learning_rate": 0.00015719654727271122,
4158
+ "loss": 0.5149,
4159
+ "step": 649
4160
+ },
4161
+ {
4162
+ "epoch": 0.93,
4163
+ "learning_rate": 0.00015707300487470717,
4164
+ "loss": 0.6435,
4165
+ "step": 650
4166
+ },
4167
+ {
4168
+ "epoch": 0.93,
4169
+ "learning_rate": 0.00015694933315080477,
4170
+ "loss": 0.5271,
4171
+ "step": 651
4172
+ },
4173
+ {
4174
+ "epoch": 0.93,
4175
+ "learning_rate": 0.00015682553238124082,
4176
+ "loss": 0.4587,
4177
+ "step": 652
4178
+ },
4179
+ {
4180
+ "epoch": 0.93,
4181
+ "learning_rate": 0.00015670160284654458,
4182
+ "loss": 0.4208,
4183
+ "step": 653
4184
+ },
4185
+ {
4186
+ "epoch": 0.94,
4187
+ "learning_rate": 0.00015657754482753704,
4188
+ "loss": 0.5887,
4189
+ "step": 654
4190
+ },
4191
+ {
4192
+ "epoch": 0.94,
4193
+ "learning_rate": 0.0001564533586053303,
4194
+ "loss": 0.6264,
4195
+ "step": 655
4196
+ },
4197
+ {
4198
+ "epoch": 0.94,
4199
+ "learning_rate": 0.00015632904446132706,
4200
+ "loss": 0.6527,
4201
+ "step": 656
4202
+ },
4203
+ {
4204
+ "epoch": 0.94,
4205
+ "learning_rate": 0.00015620460267721983,
4206
+ "loss": 0.6423,
4207
+ "step": 657
4208
+ },
4209
+ {
4210
+ "epoch": 0.94,
4211
+ "learning_rate": 0.00015608003353499033,
4212
+ "loss": 0.5313,
4213
+ "step": 658
4214
+ },
4215
+ {
4216
+ "epoch": 0.94,
4217
+ "learning_rate": 0.0001559553373169089,
4218
+ "loss": 0.58,
4219
+ "step": 659
4220
+ },
4221
+ {
4222
+ "epoch": 0.94,
4223
+ "learning_rate": 0.00015583051430553385,
4224
+ "loss": 0.5342,
4225
+ "step": 660
4226
+ },
4227
+ {
4228
+ "epoch": 0.94,
4229
+ "eval_loss": 0.5747966766357422,
4230
+ "eval_runtime": 29.3347,
4231
+ "eval_samples_per_second": 55.531,
4232
+ "eval_steps_per_second": 27.783,
4233
+ "step": 660
4234
+ },
4235
+ {
4236
+ "epoch": 0.95,
4237
+ "learning_rate": 0.00015570556478371075,
4238
+ "loss": 0.6231,
4239
+ "step": 661
4240
+ },
4241
+ {
4242
+ "epoch": 0.95,
4243
+ "learning_rate": 0.0001555804890345719,
4244
+ "loss": 0.3901,
4245
+ "step": 662
4246
+ },
4247
+ {
4248
+ "epoch": 0.95,
4249
+ "learning_rate": 0.00015545528734153553,
4250
+ "loss": 0.5303,
4251
+ "step": 663
4252
+ },
4253
+ {
4254
+ "epoch": 0.95,
4255
+ "learning_rate": 0.0001553299599883054,
4256
+ "loss": 0.5951,
4257
+ "step": 664
4258
+ },
4259
+ {
4260
+ "epoch": 0.95,
4261
+ "learning_rate": 0.00015520450725886988,
4262
+ "loss": 0.4837,
4263
+ "step": 665
4264
+ },
4265
+ {
4266
+ "epoch": 0.95,
4267
+ "learning_rate": 0.00015507892943750147,
4268
+ "loss": 0.6,
4269
+ "step": 666
4270
+ },
4271
+ {
4272
+ "epoch": 0.95,
4273
+ "learning_rate": 0.0001549532268087562,
4274
+ "loss": 0.5726,
4275
+ "step": 667
4276
+ },
4277
+ {
4278
+ "epoch": 0.96,
4279
+ "learning_rate": 0.00015482739965747282,
4280
+ "loss": 0.5652,
4281
+ "step": 668
4282
+ },
4283
+ {
4284
+ "epoch": 0.96,
4285
+ "learning_rate": 0.0001547014482687723,
4286
+ "loss": 0.8029,
4287
+ "step": 669
4288
+ },
4289
+ {
4290
+ "epoch": 0.96,
4291
+ "learning_rate": 0.0001545753729280571,
4292
+ "loss": 0.6563,
4293
+ "step": 670
4294
+ },
4295
+ {
4296
+ "epoch": 0.96,
4297
+ "learning_rate": 0.00015444917392101054,
4298
+ "loss": 0.5851,
4299
+ "step": 671
4300
+ },
4301
+ {
4302
+ "epoch": 0.96,
4303
+ "learning_rate": 0.0001543228515335962,
4304
+ "loss": 0.4526,
4305
+ "step": 672
4306
+ },
4307
+ {
4308
+ "epoch": 0.96,
4309
+ "learning_rate": 0.00015419640605205727,
4310
+ "loss": 0.6139,
4311
+ "step": 673
4312
+ },
4313
+ {
4314
+ "epoch": 0.96,
4315
+ "learning_rate": 0.0001540698377629157,
4316
+ "loss": 0.5471,
4317
+ "step": 674
4318
+ },
4319
+ {
4320
+ "epoch": 0.97,
4321
+ "learning_rate": 0.000153943146952972,
4322
+ "loss": 0.5244,
4323
+ "step": 675
4324
+ },
4325
+ {
4326
+ "epoch": 0.97,
4327
+ "learning_rate": 0.00015381633390930402,
4328
+ "loss": 0.6256,
4329
+ "step": 676
4330
+ },
4331
+ {
4332
+ "epoch": 0.97,
4333
+ "learning_rate": 0.0001536893989192668,
4334
+ "loss": 0.4401,
4335
+ "step": 677
4336
+ },
4337
+ {
4338
+ "epoch": 0.97,
4339
+ "learning_rate": 0.00015356234227049154,
4340
+ "loss": 0.5637,
4341
+ "step": 678
4342
+ },
4343
+ {
4344
+ "epoch": 0.97,
4345
+ "learning_rate": 0.00015343516425088524,
4346
+ "loss": 0.5212,
4347
+ "step": 679
4348
+ },
4349
+ {
4350
+ "epoch": 0.97,
4351
+ "learning_rate": 0.0001533078651486299,
4352
+ "loss": 0.755,
4353
+ "step": 680
4354
+ },
4355
+ {
4356
+ "epoch": 0.97,
4357
+ "eval_loss": 0.5672922730445862,
4358
+ "eval_runtime": 29.3376,
4359
+ "eval_samples_per_second": 55.526,
4360
+ "eval_steps_per_second": 27.78,
4361
+ "step": 680
4362
+ },
4363
+ {
4364
+ "epoch": 0.97,
4365
+ "learning_rate": 0.0001531804452521818,
4366
+ "loss": 0.6678,
4367
+ "step": 681
4368
+ },
4369
+ {
4370
+ "epoch": 0.98,
4371
+ "learning_rate": 0.00015305290485027114,
4372
+ "loss": 0.413,
4373
+ "step": 682
4374
+ },
4375
+ {
4376
+ "epoch": 0.98,
4377
+ "learning_rate": 0.00015292524423190094,
4378
+ "loss": 0.7693,
4379
+ "step": 683
4380
+ },
4381
+ {
4382
+ "epoch": 0.98,
4383
+ "learning_rate": 0.00015279746368634673,
4384
+ "loss": 0.7246,
4385
+ "step": 684
4386
+ },
4387
+ {
4388
+ "epoch": 0.98,
4389
+ "learning_rate": 0.00015266956350315586,
4390
+ "loss": 0.5489,
4391
+ "step": 685
4392
+ },
4393
+ {
4394
+ "epoch": 0.98,
4395
+ "learning_rate": 0.0001525415439721467,
4396
+ "loss": 0.6732,
4397
+ "step": 686
4398
+ },
4399
+ {
4400
+ "epoch": 0.98,
4401
+ "learning_rate": 0.00015241340538340808,
4402
+ "loss": 0.4387,
4403
+ "step": 687
4404
+ },
4405
+ {
4406
+ "epoch": 0.98,
4407
+ "learning_rate": 0.0001522851480272986,
4408
+ "loss": 0.7792,
4409
+ "step": 688
4410
+ },
4411
+ {
4412
+ "epoch": 0.99,
4413
+ "learning_rate": 0.00015215677219444594,
4414
+ "loss": 0.4398,
4415
+ "step": 689
4416
+ },
4417
+ {
4418
+ "epoch": 0.99,
4419
+ "learning_rate": 0.0001520282781757464,
4420
+ "loss": 0.5612,
4421
+ "step": 690
4422
+ },
4423
+ {
4424
+ "epoch": 0.99,
4425
+ "learning_rate": 0.00015189966626236385,
4426
+ "loss": 0.7103,
4427
+ "step": 691
4428
+ },
4429
+ {
4430
+ "epoch": 0.99,
4431
+ "learning_rate": 0.0001517709367457295,
4432
+ "loss": 0.6044,
4433
+ "step": 692
4434
+ },
4435
+ {
4436
+ "epoch": 0.99,
4437
+ "learning_rate": 0.000151642089917541,
4438
+ "loss": 0.6622,
4439
+ "step": 693
4440
+ },
4441
+ {
4442
+ "epoch": 0.99,
4443
+ "learning_rate": 0.0001515131260697618,
4444
+ "loss": 0.4819,
4445
+ "step": 694
4446
+ },
4447
+ {
4448
+ "epoch": 0.99,
4449
+ "learning_rate": 0.00015138404549462053,
4450
+ "loss": 0.5547,
4451
+ "step": 695
4452
+ },
4453
+ {
4454
+ "epoch": 1.0,
4455
+ "learning_rate": 0.00015125484848461026,
4456
+ "loss": 0.6227,
4457
+ "step": 696
4458
+ },
4459
+ {
4460
+ "epoch": 1.0,
4461
+ "learning_rate": 0.000151125535332488,
4462
+ "loss": 0.4646,
4463
+ "step": 697
4464
+ },
4465
+ {
4466
+ "epoch": 1.0,
4467
+ "learning_rate": 0.00015099610633127387,
4468
+ "loss": 0.5327,
4469
+ "step": 698
4470
+ },
4471
+ {
4472
+ "epoch": 1.0,
4473
+ "learning_rate": 0.00015086656177425048,
4474
+ "loss": 0.5109,
4475
+ "step": 699
4476
+ }
4477
+ ],
4478
+ "logging_steps": 1,
4479
+ "max_steps": 2097,
4480
+ "num_train_epochs": 3,
4481
+ "save_steps": 500,
4482
+ "total_flos": 9.190285595765637e+17,
4483
+ "trial_name": null,
4484
+ "trial_params": null
4485
+ }
checkpoint-699/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec169c134980720877e79f395fe6bb950547a52de90d95eec3dd885a9b35107b
3
+ size 4475
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Llama-2-7b-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 32,
18
+ "pretraining_tp": 1,
19
+ "quantization_config": {
20
+ "bnb_4bit_compute_dtype": "bfloat16",
21
+ "bnb_4bit_quant_type": "nf4",
22
+ "bnb_4bit_use_double_quant": true,
23
+ "llm_int8_enable_fp32_cpu_offload": false,
24
+ "llm_int8_has_fp16_weight": false,
25
+ "llm_int8_skip_modules": null,
26
+ "llm_int8_threshold": 6.0,
27
+ "load_in_4bit": true,
28
+ "load_in_8bit": false,
29
+ "quant_method": "bitsandbytes"
30
+ },
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 10000.0,
34
+ "tie_word_embeddings": false,
35
+ "torch_dtype": "float16",
36
+ "transformers_version": "4.34.1",
37
+ "use_cache": false,
38
+ "vocab_size": 32000
39
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "bos_token": "<s>",
31
+ "clean_up_tokenization_spaces": false,
32
+ "eos_token": "</s>",
33
+ "legacy": false,
34
+ "model_max_length": 1000000000000000019884624838656,
35
+ "pad_token": "</s>",
36
+ "padding_side": "right",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "trust_remote_code": false,
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": true,
43
+ "use_fast": true
44
+ }