Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,67 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **
|
21 |
-
- **
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
|
175 |
-
|
176 |
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
|
180 |
|
181 |
-
|
|
|
|
|
|
|
182 |
|
183 |
-
|
184 |
|
185 |
-
|
|
|
|
|
186 |
|
187 |
-
|
188 |
|
189 |
-
|
|
|
|
|
|
|
190 |
|
191 |
-
|
|
|
|
|
|
|
192 |
|
193 |
-
|
194 |
|
195 |
-
|
|
|
196 |
|
197 |
-
##
|
198 |
|
199 |
-
[
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: llama3.2
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
- perplexity
|
7 |
+
base_model:
|
8 |
+
- meta-llama/Llama-3.2-3B
|
9 |
---
|
10 |
|
11 |
+
# Model Card for oopere/pruned60-llama-3.2-3b
|
|
|
|
|
|
|
12 |
|
13 |
+
This model is a pruned version of the Llama-3.2-3B model, with a parameter reduction of 60% in the MLP layers. The pruning process aims to achieve significant computational efficiency gains, though at the cost of notable performance degradation across several benchmarks. This model is not intended to be used directly but rather to be fine-tuned for specific tasks where it can achieve acceptable performance in a highly resource-constrained environment.
|
14 |
|
15 |
## Model Details
|
16 |
|
17 |
+
- **Model Type:** Pruned version of LLaMA-3.2 using structured pruning
|
18 |
+
- **Original Model:** meta-llama/Llama-3.2-3B
|
19 |
+
- **Pruning Method:** Structured pruning of MLP layers using importance scores based on absolute maximum weights
|
20 |
+
- **Size Reduction:** 40% (from 3.21B to 1.94B parameters)
|
21 |
+
- **Architecture:** Same as original LLaMA but with reduced MLP layer sizes
|
22 |
+
- **Language(s):** Same as original model
|
23 |
+
- **License:** Same as original model
|
24 |
+
- **Developed by:** [Pere Martra](https://huggingface.co/oopere)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
### Performance on Standard Benchmarks
|
27 |
|
28 |
+
| Benchmark | Original Model | Pruned Model | Relative Change |
|
29 |
+
| ---------------- | -------------- | ------------ | --------------- |
|
30 |
+
| ARC-Easy | 65.19% | 32.32% | -50.4% |
|
31 |
+
| BoolQ | 64.16% | 50.70% | -21.0% |
|
32 |
+
| LAMBADA-OpenAI | 62.20% | 6.75% | -89.1% |
|
33 |
+
| LAMBADA-Standard | 53.46% | 6.37% | -88.1% |
|
34 |
|
35 |
+
### Key Findings
|
36 |
|
37 |
+
- **Extreme Performance Drop:** Pruning to 60% results in significant degradation across most benchmarks, especially tasks requiring nuanced reasoning and long-range comprehension.
|
38 |
+
- **ARC-Easy:** Retains minimal accuracy, showing that the model can still perform basic reasoning tasks at reduced efficacy.
|
39 |
+
- **BoolQ:** Maintains better performance compared to other tasks, indicating potential for binary classification tasks under strict constraints.
|
40 |
+
- **LAMBADA:** Both OpenAI and Standard versions show steep declines, highlighting the difficulty of handling language completion tasks.
|
41 |
|
42 |
+
### Limitations
|
43 |
|
44 |
+
- **Severe Impact on Long-Range Dependencies:** Performance on tasks like LAMBADA suggests the model is inadequate for understanding and predicting longer sequences.
|
45 |
+
- **Restricted Usability:** Significant performance losses make the model unsuitable for applications requiring high accuracy or nuanced understanding.
|
46 |
+
- **High Perplexity:** Perplexity values are exceptionally high, indicating difficulty in generating coherent language outputs.
|
47 |
|
48 |
+
### Implementation Details
|
49 |
|
50 |
+
- **Pruning Notebook:** [Detailed implementation and methodology](https://github.com/peremartra/Large-Language-Model-Notebooks-Course/blob/main/6-PRUNING/6_3_pruning_structured_llama3.2-1b_OK.ipynb)
|
51 |
+
- **GitHub Repository:** [LLM Course](https://github.com/peremartra/Large-Language-Model-Notebooks-Course)
|
52 |
+
- **Article explaining pruning methodology:**[How to Prune LLaMA 3.2 and Similar Large Language Models](https://towardsdatascience.com/how-to-prune-llama-3-2-and-similar-large-language-models-cf18e9a2afb6?sk=af4c5e40e967437325050f019b3ae606)
|
53 |
+
### Pruning Method
|
54 |
|
55 |
+
- **Technique:** Structured pruning targeting MLP layers
|
56 |
+
- **Pruning Ratio:** 60% of neurons removed from MLP layers
|
57 |
+
- **Selection Criteria:** Importance scoring based on absolute maximum weights
|
58 |
+
- **Architecture Specifics:** Maintained GLU structure during pruning
|
59 |
|
60 |
+
### Hardware Requirements
|
61 |
|
62 |
+
- Reduced memory footprint compared to original model
|
63 |
+
- Can run on hardware with ~40% less memory than original
|
64 |
|
65 |
+
## Acknowledgments
|
66 |
|
67 |
+
- Thanks to [Mariusz Kurman](https://huggingface.co/mkurman) for creating [llama-pruning](https://github.com/MedITSolutionsKurman/llama-pruning), a library that extends and improves this pruning methodology.
|