winglian commited on
Commit
0eda887
·
1 Parent(s): a42831d

trained 1ep adapter

Browse files
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: DiscoResearch/mixtral-7b-8expert
7
+ model-index:
8
+ - name: qlora-out
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
+ # qlora-out
17
+
18
+ This model is a fine-tuned version of [DiscoResearch/mixtral-7b-8expert](https://huggingface.co/DiscoResearch/mixtral-7b-8expert) on the None dataset.
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0002
38
+ - train_batch_size: 1
39
+ - eval_batch_size: 1
40
+ - seed: 42
41
+ - distributed_type: multi-GPU
42
+ - num_devices: 4
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 8
45
+ - total_eval_batch_size: 4
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: cosine
48
+ - lr_scheduler_warmup_steps: 10
49
+ - num_epochs: 1
50
+
51
+ ### Training results
52
+
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.36.0.dev0
58
+ - Pytorch 2.0.1+cu118
59
+ - Datasets 2.15.0
60
+ - Tokenizers 0.15.0
61
+ ## Training procedure
62
+
63
+
64
+ The following `bitsandbytes` quantization config was used during training:
65
+ - quant_method: bitsandbytes
66
+ - load_in_8bit: False
67
+ - load_in_4bit: True
68
+ - llm_int8_threshold: 6.0
69
+ - llm_int8_skip_modules: None
70
+ - llm_int8_enable_fp32_cpu_offload: False
71
+ - llm_int8_has_fp16_weight: False
72
+ - bnb_4bit_quant_type: nf4
73
+ - bnb_4bit_use_double_quant: True
74
+ - bnb_4bit_compute_dtype: bfloat16
75
+
76
+ ### Framework versions
77
+
78
+
79
+ - PEFT 0.6.0
adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "DiscoResearch/mixtral-7b-8expert",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "gate_proj",
20
+ "o_proj",
21
+ "w2",
22
+ "gate",
23
+ "v_proj",
24
+ "down_proj",
25
+ "q_proj",
26
+ "w1",
27
+ "k_proj",
28
+ "w3",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM"
32
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9852de442a2b4a121817a340a5ea0498d8e75b34c07343c79479583c8bbfe889
3
+ size 969195453
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "DiscoResearch/mixtral-7b-8expert",
3
+ "architectures": [
4
+ "MixtralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "DiscoResearch/mixtral-7b-8expert--configuration_moe_mistral.MixtralConfig",
9
+ "AutoModelForCausalLM": "DiscoResearch/mixtral-7b-8expert--modeling_moe_mistral.MixtralForCausalLM"
10
+ },
11
+ "bos_token_id": 1,
12
+ "eos_token_id": 2,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 4096,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 14336,
17
+ "max_position_embeddings": 32768,
18
+ "model_type": "mistral",
19
+ "num_attention_heads": 32,
20
+ "num_experts": 8,
21
+ "num_experts_per_token": 2,
22
+ "num_hidden_layers": 32,
23
+ "num_key_value_heads": 8,
24
+ "quantization_config": {
25
+ "bnb_4bit_compute_dtype": "bfloat16",
26
+ "bnb_4bit_quant_type": "nf4",
27
+ "bnb_4bit_use_double_quant": true,
28
+ "llm_int8_enable_fp32_cpu_offload": false,
29
+ "llm_int8_has_fp16_weight": false,
30
+ "llm_int8_skip_modules": null,
31
+ "llm_int8_threshold": 6.0,
32
+ "load_in_4bit": true,
33
+ "load_in_8bit": false,
34
+ "quant_method": "bitsandbytes"
35
+ },
36
+ "rms_norm_eps": 1e-05,
37
+ "rope_theta": 1000000.0,
38
+ "tie_word_embeddings": false,
39
+ "torch_dtype": "float16",
40
+ "transformers_version": "4.36.0.dev0",
41
+ "use_cache": false,
42
+ "vocab_size": 32000
43
+ }
configuration_moe_mistral.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Mistral model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ "mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json",
25
+ "mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json",
26
+ }
27
+
28
+
29
+ class MixtralConfig(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
32
+ Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
33
+ with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
34
+
35
+ [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
36
+ [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
37
+
38
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
39
+ documentation from [`PretrainedConfig`] for more information.
40
+
41
+
42
+ Args:
43
+ vocab_size (`int`, *optional*, defaults to 32000):
44
+ Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
45
+ `inputs_ids` passed when calling [`MistralModel`]
46
+ hidden_size (`int`, *optional*, defaults to 4096):
47
+ Dimension of the hidden representations.
48
+ intermediate_size (`int`, *optional*, defaults to 14336):
49
+ Dimension of the MLP representations.
50
+ num_hidden_layers (`int`, *optional*, defaults to 32):
51
+ Number of hidden layers in the Transformer encoder.
52
+ num_attention_heads (`int`, *optional*, defaults to 32):
53
+ Number of attention heads for each attention layer in the Transformer encoder.
54
+ num_key_value_heads (`int`, *optional*, defaults to 8):
55
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
56
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
57
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
58
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
59
+ by meanpooling all the original heads within that group. For more details checkout [this
60
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
64
+ The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
65
+ allows sequence of up to 4096*32 tokens.
66
+ initializer_range (`float`, *optional*, defaults to 0.02):
67
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
68
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
69
+ The epsilon used by the rms normalization layers.
70
+ use_cache (`bool`, *optional*, defaults to `True`):
71
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
72
+ relevant if `config.is_decoder=True`.
73
+ pad_token_id (`int`, *optional*):
74
+ The id of the padding token.
75
+ bos_token_id (`int`, *optional*, defaults to 1):
76
+ The id of the "beginning-of-sequence" token.
77
+ eos_token_id (`int`, *optional*, defaults to 2):
78
+ The id of the "end-of-sequence" token.
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether the model's input and output word embeddings should be tied.
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ sliding_window (`int`, *optional*, defaults to 4096):
84
+ Sliding window attention window size. If not specified, will default to `4096`.
85
+ attention_dropout (`float`, *optional*, defaults to 0.0):
86
+ The dropout ratio for the attention probabilities.
87
+
88
+ ```python
89
+ >>> from transformers import MistralModel, MistralConfig
90
+
91
+ >>> # Initializing a Mistral 7B style configuration
92
+ >>> configuration = MistralConfig()
93
+
94
+ >>> # Initializing a model from the Mistral 7B style configuration
95
+ >>> model = MistralModel(configuration)
96
+
97
+ >>> # Accessing the model configuration
98
+ >>> configuration = model.config
99
+ ```"""
100
+
101
+ model_type = "mistral"
102
+ keys_to_ignore_at_inference = ["past_key_values"]
103
+
104
+ def __init__(
105
+ self,
106
+ vocab_size=32000,
107
+ hidden_size=4096,
108
+ intermediate_size=14336,
109
+ num_hidden_layers=32,
110
+ num_attention_heads=32,
111
+ num_key_value_heads=8,
112
+ hidden_act="silu",
113
+ max_position_embeddings=4096 * 32,
114
+ initializer_range=0.02,
115
+ rms_norm_eps=1e-6,
116
+ use_cache=True,
117
+ pad_token_id=None,
118
+ bos_token_id=1,
119
+ eos_token_id=2,
120
+ tie_word_embeddings=False,
121
+ rope_theta=10000.0,
122
+ attention_dropout=0.0,
123
+ num_experts_per_token=2,
124
+ num_experts=8,
125
+ **kwargs,
126
+ ):
127
+ self.vocab_size = vocab_size
128
+ self.max_position_embeddings = max_position_embeddings
129
+ self.hidden_size = hidden_size
130
+ self.intermediate_size = intermediate_size
131
+ self.num_hidden_layers = num_hidden_layers
132
+ self.num_attention_heads = num_attention_heads
133
+
134
+ # for backward compatibility
135
+ if num_key_value_heads is None:
136
+ num_key_value_heads = num_attention_heads
137
+
138
+ self.num_key_value_heads = num_key_value_heads
139
+ self.hidden_act = hidden_act
140
+ self.initializer_range = initializer_range
141
+ self.rms_norm_eps = rms_norm_eps
142
+ self.use_cache = use_cache
143
+ self.rope_theta = rope_theta
144
+ self.attention_dropout = attention_dropout
145
+ self.num_experts = num_experts
146
+ self.num_experts_per_token = num_experts_per_token
147
+
148
+ super().__init__(
149
+ pad_token_id=pad_token_id,
150
+ bos_token_id=bos_token_id,
151
+ eos_token_id=eos_token_id,
152
+ tie_word_embeddings=tie_word_embeddings,
153
+ **kwargs,
154
+ )
modeling_moe_mistral.py ADDED
@@ -0,0 +1,1322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch Mistral model."""
21
+ import inspect
22
+ import math
23
+ import warnings
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+
32
+ from transformers.activations import ACT2FN
33
+ from transformers.cache_utils import Cache, DynamicCache
34
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
35
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
36
+ from transformers.modeling_utils import PreTrainedModel
37
+ from transformers.utils import (
38
+ add_start_docstrings,
39
+ add_start_docstrings_to_model_forward,
40
+ is_flash_attn_2_available,
41
+ is_flash_attn_greater_or_equal_2_10,
42
+ logging,
43
+ replace_return_docstrings,
44
+ )
45
+ from .configuration_moe_mistral import MixtralConfig
46
+
47
+
48
+
49
+ if is_flash_attn_2_available():
50
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
51
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
52
+
53
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
54
+
55
+
56
+ logger = logging.get_logger(__name__)
57
+
58
+ _CONFIG_FOR_DOC = "MixtralConfig"
59
+
60
+
61
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
62
+ def _get_unpad_data(attention_mask):
63
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
64
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
65
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
66
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
67
+ return (
68
+ indices,
69
+ cu_seqlens,
70
+ max_seqlen_in_batch,
71
+ )
72
+
73
+
74
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral
75
+ class MistralRMSNorm(nn.Module):
76
+ def __init__(self, hidden_size, eps=1e-6):
77
+ """
78
+ MistralRMSNorm is equivalent to T5LayerNorm
79
+ """
80
+ super().__init__()
81
+ self.weight = nn.Parameter(torch.ones(hidden_size))
82
+ self.variance_epsilon = eps
83
+
84
+ def forward(self, hidden_states):
85
+ input_dtype = hidden_states.dtype
86
+ hidden_states = hidden_states.to(torch.float32)
87
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
88
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
89
+ return self.weight * hidden_states.to(input_dtype)
90
+
91
+
92
+ # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral
93
+ class MistralRotaryEmbedding(nn.Module):
94
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
95
+ super().__init__()
96
+
97
+ self.dim = dim
98
+ self.max_position_embeddings = max_position_embeddings
99
+ self.base = base
100
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
101
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
102
+
103
+ # Build here to make `torch.jit.trace` work.
104
+ self._set_cos_sin_cache(
105
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
106
+ )
107
+
108
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
109
+ self.max_seq_len_cached = seq_len
110
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
111
+
112
+ freqs = torch.outer(t, self.inv_freq)
113
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
114
+ emb = torch.cat((freqs, freqs), dim=-1)
115
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
116
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
117
+
118
+ def forward(self, x, seq_len=None):
119
+ # x: [bs, num_attention_heads, seq_len, head_size]
120
+ if seq_len > self.max_seq_len_cached:
121
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
122
+
123
+ return (
124
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
125
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
126
+ )
127
+
128
+
129
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
130
+ def rotate_half(x):
131
+ """Rotates half the hidden dims of the input."""
132
+ x1 = x[..., : x.shape[-1] // 2]
133
+ x2 = x[..., x.shape[-1] // 2 :]
134
+ return torch.cat((-x2, x1), dim=-1)
135
+
136
+
137
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
138
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
139
+ """Applies Rotary Position Embedding to the query and key tensors.
140
+
141
+ Args:
142
+ q (`torch.Tensor`): The query tensor.
143
+ k (`torch.Tensor`): The key tensor.
144
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
145
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
146
+ position_ids (`torch.Tensor`):
147
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
148
+ used to pass offsetted position ids when working with a KV-cache.
149
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
150
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
151
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
152
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
153
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
154
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
155
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
156
+ Returns:
157
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
158
+ """
159
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
160
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
161
+ q_embed = (q * cos) + (rotate_half(q) * sin)
162
+ k_embed = (k * cos) + (rotate_half(k) * sin)
163
+ return q_embed, k_embed
164
+
165
+
166
+ class FeedForward(nn.Module):
167
+ def __init__(
168
+ self,
169
+ config
170
+ ):
171
+ """
172
+ Initialize the FeedForward module.
173
+
174
+ Args:
175
+ dim (int): Input dimension.
176
+ hidden_dim (int): Hidden dimension of the feedforward layer.
177
+ multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
178
+ ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None.
179
+
180
+ Attributes:
181
+ w1 (ColumnParallelLinear): Linear transformation for the first layer.
182
+ w2 (RowParallelLinear): Linear transformation for the second layer.
183
+ w3 (ColumnParallelLinear): Linear transformation for the third layer.
184
+
185
+ """
186
+ super().__init__()
187
+
188
+ self.w1 = nn.Linear(
189
+ config.hidden_size, config.intermediate_size, bias=False
190
+ )
191
+ self.w2 = nn.Linear(
192
+ config.intermediate_size, config.hidden_size, bias=False
193
+ )
194
+ self.w3 = nn.Linear(
195
+ config.hidden_size, config.intermediate_size, bias=False
196
+ )
197
+
198
+ def forward(self, x):
199
+ return self.w2(F.silu(self.w1(x)) * self.w3(x))
200
+
201
+
202
+ class MoE(nn.Module):
203
+ def __init__(
204
+ self,
205
+ config,
206
+ ):
207
+ super().__init__()
208
+ self.config = config
209
+ num_experts = config.num_experts
210
+ self.experts = nn.ModuleList([FeedForward(config) for i in range(num_experts)])
211
+ self.gate = nn.Linear(config.hidden_size, num_experts, bias=False)
212
+ self.num_experts_per_token = config.num_experts_per_token
213
+
214
+ def forward(self, x):
215
+ orig_shape = x.shape
216
+ x = x.view(-1, x.shape[-1])
217
+
218
+ scores = self.gate(x)
219
+ expert_weights, expert_indices = torch.topk(scores, self.num_experts_per_token, dim=-1)
220
+ expert_weights = expert_weights.softmax(dim=-1)
221
+ flat_expert_indices = expert_indices.view(-1)
222
+
223
+ x = x.repeat_interleave(self.num_experts_per_token, dim=0)
224
+ y = torch.empty_like(x)
225
+ for i, expert in enumerate(self.experts):
226
+ y[flat_expert_indices == i] = expert(x[flat_expert_indices == i])
227
+ y = (y.view(*expert_weights.shape, -1) * expert_weights.unsqueeze(-1)).sum(dim=1)
228
+ return y.view(*orig_shape)
229
+
230
+
231
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
232
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
233
+ """
234
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
235
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
236
+ """
237
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
238
+ if n_rep == 1:
239
+ return hidden_states
240
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
241
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
242
+
243
+
244
+ class MistralAttention(nn.Module):
245
+ """
246
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
247
+ and "Generating Long Sequences with Sparse Transformers".
248
+ """
249
+
250
+ def __init__(self, config: MixtralConfig, layer_idx: Optional[int] = None):
251
+ super().__init__()
252
+ self.config = config
253
+ self.layer_idx = layer_idx
254
+ if layer_idx is None:
255
+ logger.warning_once(
256
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
257
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
258
+ "when creating this class."
259
+ )
260
+
261
+ self.hidden_size = config.hidden_size
262
+ self.num_heads = config.num_attention_heads
263
+ self.head_dim = self.hidden_size // self.num_heads
264
+ self.num_key_value_heads = config.num_key_value_heads
265
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
266
+ self.max_position_embeddings = config.max_position_embeddings
267
+ self.rope_theta = config.rope_theta
268
+ self.is_causal = True
269
+ self.attention_dropout = config.attention_dropout
270
+
271
+ if (self.head_dim * self.num_heads) != self.hidden_size:
272
+ raise ValueError(
273
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
274
+ f" and `num_heads`: {self.num_heads})."
275
+ )
276
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
277
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
278
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
279
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
280
+
281
+ self.rotary_emb = MistralRotaryEmbedding(
282
+ self.head_dim,
283
+ max_position_embeddings=self.max_position_embeddings,
284
+ base=self.rope_theta,
285
+ )
286
+
287
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
288
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
289
+
290
+ def forward(
291
+ self,
292
+ hidden_states: torch.Tensor,
293
+ attention_mask: Optional[torch.Tensor] = None,
294
+ position_ids: Optional[torch.LongTensor] = None,
295
+ past_key_value: Optional[Cache] = None,
296
+ output_attentions: bool = False,
297
+ use_cache: bool = False,
298
+ **kwargs,
299
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
300
+ if "padding_mask" in kwargs:
301
+ warnings.warn(
302
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
303
+ )
304
+ bsz, q_len, _ = hidden_states.size()
305
+
306
+ query_states = self.q_proj(hidden_states)
307
+ key_states = self.k_proj(hidden_states)
308
+ value_states = self.v_proj(hidden_states)
309
+
310
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
311
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
312
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
313
+
314
+ kv_seq_len = key_states.shape[-2]
315
+ if past_key_value is not None:
316
+ if self.layer_idx is None:
317
+ raise ValueError(
318
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
319
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
320
+ "with a layer index."
321
+ )
322
+ kv_seq_len += past_key_value.get_seq_length(self.layer_idx)
323
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
324
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
325
+
326
+ if past_key_value is not None:
327
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
328
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
329
+
330
+ # repeat k/v heads if n_kv_heads < n_heads
331
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
332
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
333
+
334
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
335
+
336
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
337
+ raise ValueError(
338
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
339
+ f" {attn_weights.size()}"
340
+ )
341
+
342
+ if attention_mask is not None:
343
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
344
+ raise ValueError(
345
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
346
+ )
347
+
348
+ attn_weights = attn_weights + attention_mask
349
+
350
+ # upcast attention to fp32
351
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
352
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
353
+ attn_output = torch.matmul(attn_weights, value_states)
354
+
355
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
356
+ raise ValueError(
357
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
358
+ f" {attn_output.size()}"
359
+ )
360
+
361
+ attn_output = attn_output.transpose(1, 2).contiguous()
362
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
363
+
364
+ attn_output = self.o_proj(attn_output)
365
+
366
+ if not output_attentions:
367
+ attn_weights = None
368
+
369
+ return attn_output, attn_weights, past_key_value
370
+
371
+
372
+ class MistralFlashAttention2(MistralAttention):
373
+ """
374
+ Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
375
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
376
+ flash attention and deal with padding tokens in case the input contains any of them.
377
+ """
378
+
379
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
380
+ def __init__(self, *args, **kwargs):
381
+ super().__init__(*args, **kwargs)
382
+
383
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
384
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
385
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
386
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
387
+
388
+ def forward(
389
+ self,
390
+ hidden_states: torch.Tensor,
391
+ attention_mask: Optional[torch.Tensor] = None,
392
+ position_ids: Optional[torch.LongTensor] = None,
393
+ past_key_value: Optional[Cache] = None,
394
+ output_attentions: bool = False,
395
+ use_cache: bool = False,
396
+ **kwargs,
397
+ ):
398
+ if "padding_mask" in kwargs:
399
+ warnings.warn(
400
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
401
+ )
402
+
403
+ # overwrite attention_mask with padding_mask
404
+ attention_mask = kwargs.pop("padding_mask")
405
+ bsz, q_len, _ = hidden_states.size()
406
+
407
+ query_states = self.q_proj(hidden_states)
408
+ key_states = self.k_proj(hidden_states)
409
+ value_states = self.v_proj(hidden_states)
410
+
411
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
412
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
413
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
414
+
415
+ kv_seq_len = key_states.shape[-2]
416
+ if past_key_value is not None:
417
+ kv_seq_len += past_key_value.get_seq_length(self.layer_idx)
418
+
419
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
420
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
421
+ cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
422
+
423
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
424
+
425
+ use_sliding_windows = (
426
+ _flash_supports_window_size
427
+ and getattr(self.config, "sliding_window", None) is not None
428
+ and kv_seq_len > self.config.sliding_window
429
+ )
430
+
431
+ if not _flash_supports_window_size:
432
+ logger.warning_once(
433
+ "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
434
+ " make sure to upgrade flash-attn library."
435
+ )
436
+
437
+ if past_key_value is not None:
438
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
439
+ if getattr(self.config, "sliding_window", None) is not None and kv_seq_len > self.config.sliding_window:
440
+ slicing_tokens = 1 - self.config.sliding_window
441
+
442
+ past_key = past_key_value[0]
443
+ past_value = past_key_value[1]
444
+
445
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
446
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
447
+
448
+ if past_key.shape[-2] != self.config.sliding_window - 1:
449
+ raise ValueError(
450
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
451
+ f" {past_key.shape}"
452
+ )
453
+
454
+ past_key_value = (past_key, past_value)
455
+
456
+ if attention_mask is not None:
457
+ attention_mask = attention_mask[:, slicing_tokens:]
458
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
459
+
460
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
461
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
462
+
463
+ # repeat k/v heads if n_kv_heads < n_heads
464
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
465
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
466
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
467
+
468
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
469
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
470
+ # cast them back in float16 just to be sure everything works as expected.
471
+ input_dtype = query_states.dtype
472
+ if input_dtype == torch.float32:
473
+ # Handle the case where the model is quantized
474
+ if hasattr(self.config, "_pre_quantization_dtype"):
475
+ target_dtype = self.config._pre_quantization_dtype
476
+ else:
477
+ target_dtype = self.q_proj.weight.dtype
478
+
479
+ logger.warning_once(
480
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
481
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
482
+ f" {target_dtype}."
483
+ )
484
+
485
+ query_states = query_states.to(target_dtype)
486
+ key_states = key_states.to(target_dtype)
487
+ value_states = value_states.to(target_dtype)
488
+
489
+ # Reashape to the expected shape for Flash Attention
490
+ query_states = query_states.transpose(1, 2)
491
+ key_states = key_states.transpose(1, 2)
492
+ value_states = value_states.transpose(1, 2)
493
+
494
+ attn_output = self._flash_attention_forward(
495
+ query_states,
496
+ key_states,
497
+ value_states,
498
+ attention_mask,
499
+ q_len,
500
+ dropout=dropout_rate,
501
+ use_sliding_windows=use_sliding_windows,
502
+ )
503
+
504
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
505
+ attn_output = self.o_proj(attn_output)
506
+
507
+ if not output_attentions:
508
+ attn_weights = None
509
+
510
+ return attn_output, attn_weights, past_key_value
511
+
512
+ def _flash_attention_forward(
513
+ self,
514
+ query_states,
515
+ key_states,
516
+ value_states,
517
+ attention_mask,
518
+ query_length,
519
+ dropout=0.0,
520
+ softmax_scale=None,
521
+ use_sliding_windows=False,
522
+ ):
523
+ """
524
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
525
+ first unpad the input, then computes the attention scores and pad the final attention scores.
526
+
527
+ Args:
528
+ query_states (`torch.Tensor`):
529
+ Input query states to be passed to Flash Attention API
530
+ key_states (`torch.Tensor`):
531
+ Input key states to be passed to Flash Attention API
532
+ value_states (`torch.Tensor`):
533
+ Input value states to be passed to Flash Attention API
534
+ attention_mask (`torch.Tensor`):
535
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
536
+ position of padding tokens and 1 for the position of non-padding tokens.
537
+ dropout (`int`, *optional*):
538
+ Attention dropout
539
+ softmax_scale (`float`, *optional*):
540
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
541
+ use_sliding_windows (`bool`, *optional*):
542
+ Whether to activate sliding window attention.
543
+ """
544
+ if not self._flash_attn_uses_top_left_mask:
545
+ causal = self.is_causal
546
+ else:
547
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
548
+ causal = self.is_causal and query_length != 1
549
+
550
+ # Contains at least one padding token in the sequence
551
+ if attention_mask is not None:
552
+ batch_size = query_states.shape[0]
553
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
554
+ query_states, key_states, value_states, attention_mask, query_length
555
+ )
556
+
557
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
558
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
559
+
560
+ if not use_sliding_windows:
561
+ attn_output_unpad = flash_attn_varlen_func(
562
+ query_states,
563
+ key_states,
564
+ value_states,
565
+ cu_seqlens_q=cu_seqlens_q,
566
+ cu_seqlens_k=cu_seqlens_k,
567
+ max_seqlen_q=max_seqlen_in_batch_q,
568
+ max_seqlen_k=max_seqlen_in_batch_k,
569
+ dropout_p=dropout,
570
+ softmax_scale=softmax_scale,
571
+ causal=causal,
572
+ )
573
+ else:
574
+ attn_output_unpad = flash_attn_varlen_func(
575
+ query_states,
576
+ key_states,
577
+ value_states,
578
+ cu_seqlens_q=cu_seqlens_q,
579
+ cu_seqlens_k=cu_seqlens_k,
580
+ max_seqlen_q=max_seqlen_in_batch_q,
581
+ max_seqlen_k=max_seqlen_in_batch_k,
582
+ dropout_p=dropout,
583
+ softmax_scale=softmax_scale,
584
+ causal=causal,
585
+ window_size=(self.config.sliding_window, self.config.sliding_window),
586
+ )
587
+
588
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
589
+ else:
590
+ if not use_sliding_windows:
591
+ attn_output = flash_attn_func(
592
+ query_states,
593
+ key_states,
594
+ value_states,
595
+ dropout,
596
+ softmax_scale=softmax_scale,
597
+ causal=causal,
598
+ )
599
+ else:
600
+ attn_output = flash_attn_func(
601
+ query_states,
602
+ key_states,
603
+ value_states,
604
+ dropout,
605
+ softmax_scale=softmax_scale,
606
+ causal=causal,
607
+ window_size=(self.config.sliding_window, self.config.sliding_window),
608
+ )
609
+
610
+ return attn_output
611
+
612
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
613
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
614
+
615
+ # On the first iteration we need to properly re-create the padding mask
616
+ # by slicing it on the proper place
617
+ if kv_seq_len != attention_mask.shape[-1]:
618
+ attention_mask_num_tokens = attention_mask.shape[-1]
619
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
620
+
621
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
622
+
623
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
624
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
625
+
626
+ if query_length == kv_seq_len:
627
+ query_layer = index_first_axis(
628
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
629
+ )
630
+ cu_seqlens_q = cu_seqlens_k
631
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
632
+ indices_q = indices_k
633
+ elif query_length == 1:
634
+ max_seqlen_in_batch_q = 1
635
+ cu_seqlens_q = torch.arange(
636
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
637
+ ) # There is a memcpy here, that is very bad.
638
+ indices_q = cu_seqlens_q[:-1]
639
+ query_layer = query_layer.squeeze(1)
640
+ else:
641
+ # The -q_len: slice assumes left padding.
642
+ attention_mask = attention_mask[:, -query_length:]
643
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
644
+
645
+ return (
646
+ query_layer,
647
+ key_layer,
648
+ value_layer,
649
+ indices_q,
650
+ (cu_seqlens_q, cu_seqlens_k),
651
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
652
+ )
653
+
654
+
655
+ class MistralDecoderLayer(nn.Module):
656
+ def __init__(self, config: MixtralConfig, layer_idx: int):
657
+ super().__init__()
658
+ self.hidden_size = config.hidden_size
659
+ self.self_attn = (
660
+ MistralAttention(config=config, layer_idx=layer_idx)
661
+ if not getattr(config, "_flash_attn_2_enabled", False)
662
+ else MistralFlashAttention2(config, layer_idx=layer_idx)
663
+ )
664
+ self.mlp = MoE(config)
665
+ self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
666
+ self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
667
+
668
+ def forward(
669
+ self,
670
+ hidden_states: torch.Tensor,
671
+ attention_mask: Optional[torch.Tensor] = None,
672
+ position_ids: Optional[torch.LongTensor] = None,
673
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
674
+ output_attentions: Optional[bool] = False,
675
+ use_cache: Optional[bool] = False,
676
+ **kwargs,
677
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
678
+ if "padding_mask" in kwargs:
679
+ warnings.warn(
680
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
681
+ )
682
+ """
683
+ Args:
684
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
685
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
686
+ `(batch, sequence_length)` where padding elements are indicated by 0.
687
+ output_attentions (`bool`, *optional*):
688
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
689
+ returned tensors for more detail.
690
+ use_cache (`bool`, *optional*):
691
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
692
+ (see `past_key_values`).
693
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
694
+ """
695
+
696
+ residual = hidden_states
697
+
698
+ hidden_states = self.input_layernorm(hidden_states)
699
+
700
+ # Self Attention
701
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
702
+ hidden_states=hidden_states,
703
+ attention_mask=attention_mask,
704
+ position_ids=position_ids,
705
+ past_key_value=past_key_value,
706
+ output_attentions=output_attentions,
707
+ use_cache=use_cache,
708
+ )
709
+ hidden_states = residual + hidden_states
710
+
711
+ # Fully Connected
712
+ residual = hidden_states
713
+ hidden_states = self.post_attention_layernorm(hidden_states)
714
+ hidden_states = self.mlp(hidden_states)
715
+ hidden_states = residual + hidden_states
716
+
717
+ outputs = (hidden_states,)
718
+
719
+ if output_attentions:
720
+ outputs += (self_attn_weights,)
721
+
722
+ if use_cache:
723
+ outputs += (present_key_value,)
724
+
725
+ return outputs
726
+
727
+
728
+ MISTRAL_START_DOCSTRING = r"""
729
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
730
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
731
+ etc.)
732
+
733
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
734
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
735
+ and behavior.
736
+
737
+ Parameters:
738
+ config ([`MixtralConfig`]):
739
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
740
+ load the weights associated with the model, only the configuration. Check out the
741
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
742
+ """
743
+
744
+
745
+ @add_start_docstrings(
746
+ "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
747
+ MISTRAL_START_DOCSTRING,
748
+ )
749
+ class MistralPreTrainedModel(PreTrainedModel):
750
+ config_class = MixtralConfig
751
+ base_model_prefix = "model"
752
+ supports_gradient_checkpointing = True
753
+ _no_split_modules = ["MistralDecoderLayer"]
754
+ _skip_keys_device_placement = "past_key_values"
755
+ _supports_flash_attn_2 = True
756
+ _supports_cache_class = True
757
+
758
+ def _init_weights(self, module):
759
+ std = self.config.initializer_range
760
+ if isinstance(module, nn.Linear):
761
+ module.weight.data.normal_(mean=0.0, std=std)
762
+ if module.bias is not None:
763
+ module.bias.data.zero_()
764
+ elif isinstance(module, nn.Embedding):
765
+ module.weight.data.normal_(mean=0.0, std=std)
766
+ if module.padding_idx is not None:
767
+ module.weight.data[module.padding_idx].zero_()
768
+
769
+
770
+ MISTRAL_INPUTS_DOCSTRING = r"""
771
+ Args:
772
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
773
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
774
+ it.
775
+
776
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
777
+ [`PreTrainedTokenizer.__call__`] for details.
778
+
779
+ [What are input IDs?](../glossary#input-ids)
780
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
781
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
782
+
783
+ - 1 for tokens that are **not masked**,
784
+ - 0 for tokens that are **masked**.
785
+
786
+ [What are attention masks?](../glossary#attention-mask)
787
+
788
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
789
+ [`PreTrainedTokenizer.__call__`] for details.
790
+
791
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
792
+ `past_key_values`).
793
+
794
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
795
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
796
+ information on the default strategy.
797
+
798
+ - 1 indicates the head is **not masked**,
799
+ - 0 indicates the head is **masked**.
800
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
801
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
802
+ config.n_positions - 1]`.
803
+
804
+ [What are position IDs?](../glossary#position-ids)
805
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
806
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
807
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
808
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
809
+
810
+ Two formats are allowed:
811
+ - a [`~cache_utils.Cache`] instance;
812
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
813
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
814
+ cache format.
815
+
816
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
817
+ legacy cache format will be returned.
818
+
819
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
820
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
821
+ of shape `(batch_size, sequence_length)`.
822
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
823
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
824
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
825
+ model's internal embedding lookup matrix.
826
+ use_cache (`bool`, *optional*):
827
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
828
+ `past_key_values`).
829
+ output_attentions (`bool`, *optional*):
830
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
831
+ tensors for more detail.
832
+ output_hidden_states (`bool`, *optional*):
833
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
834
+ more detail.
835
+ return_dict (`bool`, *optional*):
836
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
837
+ """
838
+
839
+
840
+ @add_start_docstrings(
841
+ "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
842
+ MISTRAL_START_DOCSTRING,
843
+ )
844
+ class MistralModel(MistralPreTrainedModel):
845
+ """
846
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
847
+
848
+ Args:
849
+ config: MixtralConfig
850
+ """
851
+
852
+ def __init__(self, config: MixtralConfig):
853
+ super().__init__(config)
854
+ self.padding_idx = config.pad_token_id
855
+ self.vocab_size = config.vocab_size
856
+
857
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
858
+ self.layers = nn.ModuleList(
859
+ [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
860
+ )
861
+ self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
862
+
863
+ self.gradient_checkpointing = False
864
+ # Initialize weights and apply final processing
865
+ self.post_init()
866
+
867
+ def get_input_embeddings(self):
868
+ return self.embed_tokens
869
+
870
+ def set_input_embeddings(self, value):
871
+ self.embed_tokens = value
872
+
873
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
874
+ def forward(
875
+ self,
876
+ input_ids: torch.LongTensor = None,
877
+ attention_mask: Optional[torch.Tensor] = None,
878
+ position_ids: Optional[torch.LongTensor] = None,
879
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
880
+ inputs_embeds: Optional[torch.FloatTensor] = None,
881
+ use_cache: Optional[bool] = None,
882
+ output_attentions: Optional[bool] = None,
883
+ output_hidden_states: Optional[bool] = None,
884
+ return_dict: Optional[bool] = None,
885
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
886
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
887
+ output_hidden_states = (
888
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
889
+ )
890
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
891
+
892
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
893
+
894
+ # retrieve input_ids and inputs_embeds
895
+ if input_ids is not None and inputs_embeds is not None:
896
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
897
+ elif input_ids is not None:
898
+ batch_size, seq_length = input_ids.shape
899
+ elif inputs_embeds is not None:
900
+ batch_size, seq_length, _ = inputs_embeds.shape
901
+ else:
902
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
903
+
904
+ seq_length_with_past = seq_length
905
+ past_key_values_length = 0
906
+
907
+ if use_cache:
908
+ use_legacy_cache = not isinstance(past_key_values, Cache)
909
+ if use_legacy_cache:
910
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
911
+ past_key_values_length = past_key_values.get_seq_length()
912
+ seq_length_with_past = seq_length_with_past + past_key_values_length
913
+
914
+ if position_ids is None:
915
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
916
+ position_ids = torch.arange(
917
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
918
+ )
919
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
920
+ else:
921
+ position_ids = position_ids.view(-1, seq_length).long()
922
+
923
+ if inputs_embeds is None:
924
+ inputs_embeds = self.embed_tokens(input_ids)
925
+
926
+ if (
927
+ attention_mask is not None
928
+ and hasattr(self.config, "_flash_attn_2_enabled")
929
+ and self.config._flash_attn_2_enabled
930
+ and use_cache
931
+ ):
932
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
933
+ if is_padding_right:
934
+ raise ValueError(
935
+ "You are attempting to perform batched generation with padding_side='right'"
936
+ " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
937
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
938
+ )
939
+
940
+ if getattr(self.config, "_flash_attn_2_enabled", False):
941
+ # 2d mask is passed through the layers
942
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
943
+ else:
944
+ # 4d mask is passed through the layers
945
+ attention_mask = _prepare_4d_causal_attention_mask(
946
+ attention_mask,
947
+ (batch_size, seq_length),
948
+ inputs_embeds,
949
+ past_key_values_length
950
+ )
951
+
952
+ hidden_states = inputs_embeds
953
+
954
+ if self.gradient_checkpointing and self.training:
955
+ if use_cache:
956
+ logger.warning_once(
957
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
958
+ )
959
+ use_cache = False
960
+
961
+ # decoder layers
962
+ all_hidden_states = () if output_hidden_states else None
963
+ all_self_attns = () if output_attentions else None
964
+ next_decoder_cache = None
965
+
966
+ for decoder_layer in self.layers:
967
+ if output_hidden_states:
968
+ all_hidden_states += (hidden_states,)
969
+
970
+ if self.gradient_checkpointing and self.training:
971
+ layer_outputs = self._gradient_checkpointing_func(
972
+ decoder_layer.__call__,
973
+ hidden_states,
974
+ attention_mask,
975
+ position_ids,
976
+ past_key_values,
977
+ output_attentions,
978
+ use_cache,
979
+ )
980
+ else:
981
+ layer_outputs = decoder_layer(
982
+ hidden_states,
983
+ attention_mask=attention_mask,
984
+ position_ids=position_ids,
985
+ past_key_value=past_key_values,
986
+ output_attentions=output_attentions,
987
+ use_cache=use_cache,
988
+ )
989
+
990
+ hidden_states = layer_outputs[0]
991
+
992
+ if use_cache:
993
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
994
+
995
+ if output_attentions:
996
+ all_self_attns += (layer_outputs[1],)
997
+
998
+ hidden_states = self.norm(hidden_states)
999
+
1000
+ # add hidden states from the last decoder layer
1001
+ if output_hidden_states:
1002
+ all_hidden_states += (hidden_states,)
1003
+
1004
+ next_cache = None
1005
+ if use_cache:
1006
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1007
+
1008
+ if not return_dict:
1009
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1010
+ return BaseModelOutputWithPast(
1011
+ last_hidden_state=hidden_states,
1012
+ past_key_values=next_cache,
1013
+ hidden_states=all_hidden_states,
1014
+ attentions=all_self_attns,
1015
+ )
1016
+
1017
+
1018
+ class MixtralForCausalLM(MistralPreTrainedModel):
1019
+ _tied_weights_keys = ["lm_head.weight"]
1020
+
1021
+ def __init__(self, config):
1022
+ super().__init__(config)
1023
+ self.model = MistralModel(config)
1024
+ self.vocab_size = config.vocab_size
1025
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1026
+
1027
+ # Initialize weights and apply final processing
1028
+ self.post_init()
1029
+
1030
+ def get_input_embeddings(self):
1031
+ return self.model.embed_tokens
1032
+
1033
+ def set_input_embeddings(self, value):
1034
+ self.model.embed_tokens = value
1035
+
1036
+ def get_output_embeddings(self):
1037
+ return self.lm_head
1038
+
1039
+ def set_output_embeddings(self, new_embeddings):
1040
+ self.lm_head = new_embeddings
1041
+
1042
+ def set_decoder(self, decoder):
1043
+ self.model = decoder
1044
+
1045
+ def get_decoder(self):
1046
+ return self.model
1047
+
1048
+ def _init_weights(self, module):
1049
+ return
1050
+
1051
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
1052
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1053
+ def forward(
1054
+ self,
1055
+ input_ids: torch.LongTensor = None,
1056
+ attention_mask: Optional[torch.Tensor] = None,
1057
+ position_ids: Optional[torch.LongTensor] = None,
1058
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1059
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1060
+ labels: Optional[torch.LongTensor] = None,
1061
+ use_cache: Optional[bool] = None,
1062
+ output_attentions: Optional[bool] = None,
1063
+ output_hidden_states: Optional[bool] = None,
1064
+ return_dict: Optional[bool] = None,
1065
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1066
+ r"""
1067
+ Args:
1068
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1069
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1070
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1071
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1072
+
1073
+ Returns:
1074
+
1075
+ Example:
1076
+
1077
+ ```python
1078
+ >>> from transformers import AutoTokenizer, MistralForCausalLM
1079
+
1080
+ >>> model = MistralForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1081
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1082
+
1083
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1084
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1085
+
1086
+ >>> # Generate
1087
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1088
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1089
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1090
+ ```"""
1091
+
1092
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1093
+ output_hidden_states = (
1094
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1095
+ )
1096
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1097
+
1098
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1099
+ outputs = self.model(
1100
+ input_ids=input_ids,
1101
+ attention_mask=attention_mask,
1102
+ position_ids=position_ids,
1103
+ past_key_values=past_key_values,
1104
+ inputs_embeds=inputs_embeds,
1105
+ use_cache=use_cache,
1106
+ output_attentions=output_attentions,
1107
+ output_hidden_states=output_hidden_states,
1108
+ return_dict=return_dict,
1109
+ )
1110
+
1111
+ hidden_states = outputs[0]
1112
+ logits = self.lm_head(hidden_states)
1113
+ logits = logits.float()
1114
+
1115
+ loss = None
1116
+ if labels is not None:
1117
+ # Shift so that tokens < n predict n
1118
+ shift_logits = logits[..., :-1, :].contiguous()
1119
+ shift_labels = labels[..., 1:].contiguous()
1120
+ # Flatten the tokens
1121
+ loss_fct = CrossEntropyLoss()
1122
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1123
+ shift_labels = shift_labels.view(-1)
1124
+ # Enable model parallelism
1125
+ shift_labels = shift_labels.to(shift_logits.device)
1126
+ loss = loss_fct(shift_logits, shift_labels)
1127
+
1128
+ if not return_dict:
1129
+ output = (logits,) + outputs[1:]
1130
+ return (loss,) + output if loss is not None else output
1131
+
1132
+ return CausalLMOutputWithPast(
1133
+ loss=loss,
1134
+ logits=logits,
1135
+ past_key_values=outputs.past_key_values,
1136
+ hidden_states=outputs.hidden_states,
1137
+ attentions=outputs.attentions,
1138
+ )
1139
+
1140
+ def prepare_inputs_for_generation(
1141
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1142
+ ):
1143
+ # Omit tokens covered by past_key_values
1144
+ if past_key_values is not None:
1145
+ if isinstance(past_key_values, Cache):
1146
+ cache_length = past_key_values.get_seq_length()
1147
+ past_length = past_key_values.seen_tokens
1148
+ else:
1149
+ cache_length = past_length = past_key_values[0][0].shape[2]
1150
+
1151
+ # Keep only the unprocessed tokens:
1152
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1153
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1154
+ # input)
1155
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1156
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1157
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1158
+ # input_ids based on the past_length.
1159
+ elif past_length < input_ids.shape[1]:
1160
+ input_ids = input_ids[:, past_length:]
1161
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1162
+
1163
+ # If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
1164
+ # older attention values, as their corresponding values are not part of the input.
1165
+ if cache_length < past_length and attention_mask is not None:
1166
+ attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
1167
+
1168
+ position_ids = kwargs.get("position_ids", None)
1169
+ if attention_mask is not None and position_ids is None:
1170
+ # create position_ids on the fly for batch generation
1171
+ position_ids = attention_mask.long().cumsum(-1) - 1
1172
+ position_ids.masked_fill_(attention_mask == 0, 1)
1173
+ if past_key_values:
1174
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1175
+
1176
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1177
+ if inputs_embeds is not None and past_key_values is None:
1178
+ model_inputs = {"inputs_embeds": inputs_embeds}
1179
+ else:
1180
+ model_inputs = {"input_ids": input_ids}
1181
+
1182
+ model_inputs.update(
1183
+ {
1184
+ "position_ids": position_ids,
1185
+ "past_key_values": past_key_values,
1186
+ "use_cache": kwargs.get("use_cache"),
1187
+ "attention_mask": attention_mask,
1188
+ }
1189
+ )
1190
+ return model_inputs
1191
+
1192
+ @staticmethod
1193
+ def _reorder_cache(past_key_values, beam_idx):
1194
+ reordered_past = ()
1195
+ for layer_past in past_key_values:
1196
+ reordered_past += (
1197
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1198
+ )
1199
+ return reordered_past
1200
+
1201
+
1202
+ @add_start_docstrings(
1203
+ """
1204
+ The Mistral Model transformer with a sequence classification head on top (linear layer).
1205
+
1206
+ [`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1207
+ (e.g. GPT-2) do.
1208
+
1209
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1210
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1211
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1212
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1213
+ each row of the batch).
1214
+ """,
1215
+ MISTRAL_START_DOCSTRING,
1216
+ )
1217
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mistral, LLAMA->MISTRAL
1218
+ class MistralForSequenceClassification(MistralPreTrainedModel):
1219
+ def __init__(self, config):
1220
+ super().__init__(config)
1221
+ self.num_labels = config.num_labels
1222
+ self.model = MistralModel(config)
1223
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1224
+
1225
+ # Initialize weights and apply final processing
1226
+ self.post_init()
1227
+
1228
+ def get_input_embeddings(self):
1229
+ return self.model.embed_tokens
1230
+
1231
+ def set_input_embeddings(self, value):
1232
+ self.model.embed_tokens = value
1233
+
1234
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
1235
+ def forward(
1236
+ self,
1237
+ input_ids: torch.LongTensor = None,
1238
+ attention_mask: Optional[torch.Tensor] = None,
1239
+ position_ids: Optional[torch.LongTensor] = None,
1240
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1241
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1242
+ labels: Optional[torch.LongTensor] = None,
1243
+ use_cache: Optional[bool] = None,
1244
+ output_attentions: Optional[bool] = None,
1245
+ output_hidden_states: Optional[bool] = None,
1246
+ return_dict: Optional[bool] = None,
1247
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1248
+ r"""
1249
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1250
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1251
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1252
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1253
+ """
1254
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1255
+
1256
+ transformer_outputs = self.model(
1257
+ input_ids,
1258
+ attention_mask=attention_mask,
1259
+ position_ids=position_ids,
1260
+ past_key_values=past_key_values,
1261
+ inputs_embeds=inputs_embeds,
1262
+ use_cache=use_cache,
1263
+ output_attentions=output_attentions,
1264
+ output_hidden_states=output_hidden_states,
1265
+ return_dict=return_dict,
1266
+ )
1267
+ hidden_states = transformer_outputs[0]
1268
+ logits = self.score(hidden_states)
1269
+
1270
+ if input_ids is not None:
1271
+ batch_size = input_ids.shape[0]
1272
+ else:
1273
+ batch_size = inputs_embeds.shape[0]
1274
+
1275
+ if self.config.pad_token_id is None and batch_size != 1:
1276
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1277
+ if self.config.pad_token_id is None:
1278
+ sequence_lengths = -1
1279
+ else:
1280
+ if input_ids is not None:
1281
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1282
+ logits.device
1283
+ )
1284
+ else:
1285
+ sequence_lengths = -1
1286
+
1287
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1288
+
1289
+ loss = None
1290
+ if labels is not None:
1291
+ labels = labels.to(logits.device)
1292
+ if self.config.problem_type is None:
1293
+ if self.num_labels == 1:
1294
+ self.config.problem_type = "regression"
1295
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1296
+ self.config.problem_type = "single_label_classification"
1297
+ else:
1298
+ self.config.problem_type = "multi_label_classification"
1299
+
1300
+ if self.config.problem_type == "regression":
1301
+ loss_fct = MSELoss()
1302
+ if self.num_labels == 1:
1303
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1304
+ else:
1305
+ loss = loss_fct(pooled_logits, labels)
1306
+ elif self.config.problem_type == "single_label_classification":
1307
+ loss_fct = CrossEntropyLoss()
1308
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1309
+ elif self.config.problem_type == "multi_label_classification":
1310
+ loss_fct = BCEWithLogitsLoss()
1311
+ loss = loss_fct(pooled_logits, labels)
1312
+ if not return_dict:
1313
+ output = (pooled_logits,) + transformer_outputs[1:]
1314
+ return ((loss,) + output) if loss is not None else output
1315
+
1316
+ return SequenceClassifierOutputWithPast(
1317
+ loss=loss,
1318
+ logits=pooled_logits,
1319
+ past_key_values=transformer_outputs.past_key_values,
1320
+ hidden_states=transformer_outputs.hidden_states,
1321
+ attentions=transformer_outputs.attentions,
1322
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "bos_token": "<s>",
31
+ "clean_up_tokenization_spaces": false,
32
+ "eos_token": "</s>",
33
+ "legacy": true,
34
+ "model_max_length": 1000000000000000019884624838656,
35
+ "pad_token": "</s>",
36
+ "sp_model_kwargs": {},
37
+ "spaces_between_special_tokens": false,
38
+ "tokenizer_class": "LlamaTokenizer",
39
+ "trust_remote_code": false,
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false,
42
+ "use_fast": true
43
+ }