File size: 15,964 Bytes
b988d87
 
 
 
 
 
2d75c8e
b988d87
 
26b4c4e
b988d87
 
282b2eb
 
d686636
 
282b2eb
 
 
b988d87
 
 
 
282b2eb
b988d87
 
282b2eb
b988d87
 
282b2eb
b988d87
 
282b2eb
b988d87
 
282b2eb
b988d87
 
 
203885a
282b2eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b988d87
629ac7f
282b2eb
629ac7f
5adb915
629ac7f
 
 
b988d87
 
 
 
629ac7f
b988d87
 
 
124240a
b988d87
 
 
8ca6aef
 
b988d87
 
 
9847e4b
 
 
 
 
b988d87
 
 
 
282b2eb
b988d87
 
ffea899
b988d87
 
47ce745
b988d87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8abdf2
ab38e50
b988d87
 
81882b8
b988d87
 
 
 
 
 
 
 
 
 
 
 
 
 
2d75c8e
b988d87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d75c8e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
---
pipeline_tag: visual-question-answering
language:
- en
- zh
datasets:
- HaoyeZhang/RLAIF-V-Dataset
---

[GitHub](https://github.com/OpenBMB/MiniCPM-V) | [Demo](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5)


## News <!-- omit in toc -->

* [2024.05.23] πŸ” We've released a comprehensive comparison between Phi-3-vision-128k-instruct and MiniCPM-Llama3-V 2.5, including benchmarks evaluations, and multilingual capabilities πŸŒŸπŸ“ŠπŸŒ. Click [here](https://github.com/OpenBMB/MiniCPM-V/blob/main/docs/compare_with_phi-3_vision.md) to view more details.
* [2024.05.20] We open-soure MiniCPM-Llama3-V 2.5, it has improved OCR capability and supports 30+ languages, representing the first end-side MLLM achieving GPT-4V level performance! We provide [efficient inference](#deployment-on-mobile-phone) and [simple fine-tuning](https://github.com/OpenBMB/MiniCPM-V/blob/main/finetune/readme.md). Try it now!


## Model Summary

**MiniCPM-Llama3-V 2.5** is the latest model in the MiniCPM-V series. The model is built on SigLip-400M and Llama3-8B-Instruct with a total of 8B parameters. It exhibits a significant performance improvement over MiniCPM-V 2.0. Notable features of MiniCPM-Llama3-V 2.5 include:

- πŸ”₯ **Leading Performance.**
  MiniCPM-Llama3-V 2.5 has achieved an average score of 65.1 on OpenCompass, a comprehensive evaluation over 11 popular benchmarks. **With only 8B parameters, it surpasses widely used proprietary models like GPT-4V-1106, Gemini Pro, Claude 3 and Qwen-VL-Max** and greatly outperforms other Llama 3-based MLLMs.

- πŸ’ͺ **Strong OCR Capabilities.**
  MiniCPM-Llama3-V 2.5 can process images with any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344), achieving an **700+ score on OCRBench, surpassing proprietary models such as GPT-4o, GPT-4V-0409, Qwen-VL-Max and Gemini Pro**. Based on recent user feedback, MiniCPM-Llama3-V 2.5 has now enhanced full-text OCR extraction, table-to-markdown conversion, and other high-utility capabilities, and has further strengthened its instruction-following and complex reasoning abilities, enhancing multimodal interaction experiences.

- πŸ† **Trustworthy Behavior.**
  Leveraging the latest [RLAIF-V](https://github.com/RLHF-V/RLAIF-V/) method (the newest technology in the [RLHF-V](https://github.com/RLHF-V) [CVPR'24] series), MiniCPM-Llama3-V 2.5 exhibits more trustworthy behavior. It achieves **10.3%** hallucination rate on Object HalBench, lower than GPT-4V-1106 (13.6%), achieving the best-level performance within the open-source community.

- 🌏 **Multilingual Support.**
  Thanks to the strong multilingual capabilities of Llama 3 and the cross-lingual generalization technique from [VisCPM](https://github.com/OpenBMB/VisCPM), MiniCPM-Llama3-V 2.5 extends its bilingual (Chinese-English) multimodal capabilities to **over 30 languages including German, French, Spanish, Italian, Russian etc.** [All Supported Languages](./assets/minicpm-llama-v-2-5_languages.md).

- πŸš€ **Efficient Deployment.**
  MiniCPM-Llama3-V 2.5 systematically employs **model quantization, CPU optimizations, NPU optimizations and compilation optimizations**, achieving high-efficiency deployment on edge devices. For mobile phones with Qualcomm chips, we have integrated the NPU acceleration framework QNN into llama.cpp for the first time. After systematic optimization, MiniCPM-Llama3-V 2.5 has realized a **150-fold acceleration in multimodal large model end-side image encoding** and a **3-fold increase in language decoding speed**.

### Evaluation <!-- omit in toc -->

Results on TextVQA, DocVQA, OCRBench, OpenCompass MultiModal Avg , MME, MMBench, MMMU, MathVista, LLaVA Bench, RealWorld QA, Object HalBench.
<table style="margin: 0px auto;">
    <thead>
        <tr>
            <th align="left">Model</th>
            <th>Size</th>
            <th>OCRBench</th>
            <th>TextVQA val</th>
            <th>DocVQA test</th>
            <th>Open-Compass</th>
            <th>MME</th>
            <th>MMB test (en)</th>
            <th>MMB test (cn)</th>
            <th>MMMU val</th>
            <th>Math-Vista</th>
            <th>LLaVA Bench</th>
            <th>RealWorld QA</th>
            <th>Object HalBench</th>
        </tr>
    </thead>
    <tbody align="center">
        <tr>
            <td colspan="14" align="left"><strong>Proprietary</strong></td>
        </tr>
        <tr>
            <td nowrap="nowrap" align="left">Gemini Pro</td>
            <td>-</td>
            <td>680</td>
            <td>74.6</td>
            <td>88.1</td>
            <td>62.9</td>
            <td>2148.9</td>
            <td>73.6</td>
            <td>74.3</td>
            <td>48.9</td>
            <td>45.8</td>
            <td>79.9</td>
            <td>60.4</td>
            <td>-</td>
        </tr>
        <tr>
            <td nowrap="nowrap" align="left">GPT-4V (2023.11.06)</td>
            <td>-</td>
            <td>645</td>
            <td>78.0</td>
            <td>88.4</td>
            <td>63.5</td>
            <td>1771.5</td>
            <td>77.0</td>
            <td>74.4</td>
            <td>53.8</td>
            <td>47.8</td>
            <td>93.1</td>
            <td>63.0</td>
            <td>86.4</td>
        </tr>
        <tr>
            <td colspan="14" align="left"><strong>Open-source</strong></td>
        </tr>
        <tr>
            <td nowrap="nowrap" align="left">Mini-Gemini</td>
            <td>2.2B</td>
            <td>-</td>
            <td>56.2</td>
            <td>34.2*</td>
            <td>-</td>
            <td>1653.0</td>
            <td>-</td>
            <td>-</td>
            <td>31.7</td>
            <td>-</td>
            <td>-</td>
            <td>-</td>
            <td>-</td>
        </tr>
        <tr>
            <td nowrap="nowrap" align="left">Qwen-VL-Chat</td>
            <td>9.6B</td>
            <td>488</td>
            <td>61.5</td>
            <td>62.6</td>
            <td>51.6</td>
            <td>1860.0</td>
            <td>61.8</td>
            <td>56.3</td>
            <td>37.0</td>
            <td>33.8</td>
            <td>67.7</td>
            <td>49.3</td>
            <td>56.2</td>
        </tr>
        <tr>
            <td nowrap="nowrap" align="left">DeepSeek-VL-7B</td>
            <td>7.3B</td>
            <td>435</td>
            <td>64.7*</td>
            <td>47.0*</td>
            <td>54.6</td>
            <td>1765.4</td>
            <td>73.8</td>
            <td>71.4</td>
            <td>38.3</td>
            <td>36.8</td>
            <td>77.8</td>
            <td>54.2</td>
            <td>-</td>
        </tr>        
        <tr>
            <td nowrap="nowrap" align="left">Yi-VL-34B</td>
            <td>34B</td>
            <td>290</td>
            <td>43.4*</td>
            <td>16.9*</td>
            <td>52.2</td>
            <td><strong>2050.2</strong></td>
            <td>72.4</td>
            <td>70.7</td>
            <td>45.1</td>
            <td>30.7</td>
            <td>62.3</td>
            <td>54.8</td>
            <td>79.3</td>
        </tr>
        <tr>
            <td nowrap="nowrap" align="left">CogVLM-Chat</td>
            <td>17.4B</td>
            <td>590</td>
            <td>70.4</td>
            <td>33.3*</td>
            <td>54.2</td>
            <td>1736.6</td>
            <td>65.8</td>
            <td>55.9</td>
            <td>37.3</td>
            <td>34.7</td>
            <td>73.9</td>
            <td>60.3</td>
            <td>73.6</td>
        </tr>
        <tr>
            <td nowrap="nowrap" align="left">TextMonkey</td>
            <td>9.7B</td>
            <td>558</td>
            <td>64.3</td>
            <td>66.7</td>
            <td>-</td>
            <td>-</td>
            <td>-</td>
            <td>-</td>
            <td>-</td>
            <td>-</td>
            <td>-</td>
            <td>-</td>
            <td>-</td>
        </tr>
        <tr>
          <td nowrap="nowrap" align="left">Idefics2</td>
          <td>8.0B</td>
          <td>-</td>
          <td>73.0</td>
          <td>74.0</td>
          <td>57.2</td>
          <td>1847.6</td>
          <td>75.7</td>
          <td>68.6</td>
          <td>45.2</td>
          <td>52.2</td>
          <td>49.1</td>
          <td>60.7</td>
          <td>-</td>
        </tr>
        <tr>
            <td nowrap="nowrap" align="left">Bunny-LLama-3-8B</td>
            <td>8.4B</td>
            <td>-</td>
            <td>-</td>
            <td>-</td>
            <td>54.3</td>
            <td>1920.3</td>
            <td>77.0</td>
            <td>73.9</td>
            <td>41.3</td>
            <td>31.5</td>
            <td>61.2</td>
            <td>58.8</td>
            <td>-</td>
        </tr>
        <tr>
            <td nowrap="nowrap" align="left">LLaVA-NeXT Llama-3-8B</td>
            <td>8.4B</td>
            <td>-</td>
            <td>-</td>
            <td>78.2</td>
            <td>-</td>
            <td>1971.5</td>
            <td>-</td>
            <td>-</td>
            <td>41.7</td>
            <td>37.5</td>
            <td>80.1</td>
            <td>60.0</td>
            <td>-</td>
        </tr>
        <tr>
            <td nowrap="nowrap" align="left">Phi-3-vision-128k-instruct</td>
            <td>4.2B</td>
            <td>639*</td>
            <td>70.9</td>
            <td>-</td>
            <td>-</td>
            <td>1537.5*</td>
            <td>-</td>
            <td>-</td>
            <td>40.4</td>
            <td>44.5</td>
            <td>64.2*</td>
            <td>58.8*</td>
            <td>-</td>
        </tr>
        <tr style="background-color: #e6f2ff;">
            <td nowrap="nowrap" align="left">MiniCPM-V 1.0</td>
            <td>2.8B</td>
            <td>366</td>
            <td>60.6</td>
            <td>38.2</td>
            <td>47.5</td>
            <td>1650.2</td>
            <td>64.1</td>
            <td>62.6</td>
            <td>38.3</td>
            <td>28.9</td>
            <td>51.3</td>
            <td>51.2</td>
            <td>78.4</td>
        </tr>
        <tr style="background-color: #e6f2ff;">
            <td nowrap="nowrap" align="left">MiniCPM-V 2.0</td>
            <td>2.8B</td>
            <td>605</td>
            <td>74.1</td>
            <td>71.9</td>
            <td>54.5</td>
            <td>1808.6</td>
            <td>69.1</td>
            <td>66.5</td>
            <td>38.2</td>
            <td>38.7</td>
            <td>69.2</td>
            <td>55.8</td>
            <td>85.5</td>
        </tr>
        <tr style="background-color: #e6f2ff;">
            <td nowrap="nowrap" align="left">MiniCPM-Llama3-V 2.5</td>
            <td>8.5B</td>
            <td><strong>725</strong></td>
            <td><strong>76.6</strong></td>
            <td><strong>84.8</strong></td>
            <td><strong>65.1</strong></td>
            <td>2024.6</td>
            <td><strong>77.2</strong></td>
            <td><strong>74.2</strong></td>
            <td><strong>45.8</strong></td>
            <td><strong>54.3</strong></td>
            <td><strong>86.7</strong></td>
            <td><strong>63.5</strong></td>
            <td><strong>89.7</strong></td>
        </tr>
    </tbody>
</table>


Evaluation results of multilingual LLaVA Bench 
<div align="center">
    <img src="assets/llavabench_compare.png" width="80%" />
</div>


### Examples <!-- omit in toc -->

<table align="center">
    <p align="center">
      <img src="assets/minicpmv-llama3-v2.5/cases_all.png" width=95%/>
    </p>
</table>

We deploy MiniCPM-Llama3-V 2.5 on end devices. The demo video is the raw screen recording on a Xiaomi 14 Pro without edition.

<table align="center">
    <p align="center">
      <img src="assets/gif_cases/ticket.gif" width=40% style="display:inline-block;"/>
      <img src="assets/gif_cases/meal_plan.gif" width=40% style="display:inline-block;"/>
    </p>
</table>

<table align="center">
    <p align="center">
      <img src="assets/gif_cases/1-4.gif" width=80%/>
    </p>
</table>



## Demo
Click here to try out the Demo of [MiniCPM-Llama3-V 2.5](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5).

## Deployment on Mobile Phone
Coming soon.

## Usage
Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.10:
```
Pillow==10.1.0
torch==2.1.2
torchvision==0.16.2
transformers==4.40.0
sentencepiece==0.1.99
```

```python
# test.py
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer

model = AutoModel.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True, torch_dtype=torch.float16)
model = model.to(device='cuda')

tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-Llama3-V-2_5', trust_remote_code=True)
model.eval()

image = Image.open('xx.jpg').convert('RGB')
question = 'What is in the image?'
msgs = [{'role': 'user', 'content': question}]

res = model.chat(
    image=image,
    msgs=msgs,
    tokenizer=tokenizer,
    sampling=True,
    temperature=0.7
)
print(res)
```

Please look at [GitHub](https://github.com/OpenBMB/MiniCPM-V) for more detail about usage.

## Int4 quantized version
Download the int4 quantized version for lower GPU memory (8GB) usage:  [MiniCPM-Llama3-V-2_5-int4](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-int4).

## MiniCPM-V 2.0 <!-- omit in toc -->
Please see the info about MiniCPM-V 2.0 [here](https://huggingface.co/openbmb/MiniCPM-V-2).

## License
#### Model License
* The code in this repo is released according to [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE)
* The usage of MiniCPM-Llama3-V 2.5's parameters is subject to ["General Model License Agreement - Source Notes - Publicity Restrictions - Commercial License"](https://github.com/OpenBMB/General-Model-License/blob/main/)
* The parameters are fully open to acedemic research
* Please contact cpm@modelbest.cn to obtain a written authorization for commercial uses. Free commercial use is also allowed after registration.

#### Statement
* As a LLM, MiniCPM-Llama3-V 2.5 generates contents by learning a large mount of texts, but it cannot comprehend, express personal opinions or make value judgement. Anything generated by MiniCPM-Llama3-V 2.5 does not represent the views and positions of the model developers
* We will not be liable for any problems arising from the use of the MinCPM-V open Source model, including but not limited to data security issues, risk of public opinion, or any risks and problems arising from the misdirection, misuse, dissemination or misuse of the model.

## Other Multimodal Projects from Our Team

[VisCPM](https://github.com/OpenBMB/VisCPM/tree/main) | [RLHF-V](https://github.com/RLHF-V/RLHF-V) | [LLaVA-UHD](https://github.com/thunlp/LLaVA-UHD)  | [RLAIF-V](https://github.com/RLHF-V/RLAIF-V)

## Citation

If you find our work helpful, please consider citing the following papers

```bib
@article{yu2023rlhf,
  title={Rlhf-v: Towards trustworthy mllms via behavior alignment from fine-grained correctional human feedback},
  author={Yu, Tianyu and Yao, Yuan and Zhang, Haoye and He, Taiwen and Han, Yifeng and Cui, Ganqu and Hu, Jinyi and Liu, Zhiyuan and Zheng, Hai-Tao and Sun, Maosong and others},
  journal={arXiv preprint arXiv:2312.00849},
  year={2023}
}
@article{viscpm,
    title={Large Multilingual Models Pivot Zero-Shot Multimodal Learning across Languages}, 
    author={Jinyi Hu and Yuan Yao and Chongyi Wang and Shan Wang and Yinxu Pan and Qianyu Chen and Tianyu Yu and Hanghao Wu and Yue Zhao and Haoye Zhang and Xu Han and Yankai Lin and Jiao Xue and Dahai Li and Zhiyuan Liu and Maosong Sun},
    journal={arXiv preprint arXiv:2308.12038},
    year={2023}
}
@article{xu2024llava-uhd,
  title={{LLaVA-UHD}: an LMM Perceiving Any Aspect Ratio and High-Resolution Images},
  author={Xu, Ruyi and Yao, Yuan and Guo, Zonghao and Cui, Junbo and Ni, Zanlin and Ge, Chunjiang and Chua, Tat-Seng and Liu, Zhiyuan and Huang, Gao},
  journal={arXiv preprint arXiv:2403.11703},
  year={2024}
}
```