File size: 10,594 Bytes
5ecab76
 
 
 
a72acc2
5d2fd73
08dfdf1
5ecab76
a72acc2
5ecab76
a72acc2
7243e76
 
 
a72acc2
7243e76
 
 
a72acc2
 
7243e76
 
a72acc2
7243e76
 
 
 
a72acc2
7243e76
 
 
a72acc2
 
7243e76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a72acc2
7243e76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a72acc2
7243e76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023e8b
 
7243e76
1023e8b
7243e76
 
 
1023e8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a72acc2
1023e8b
7243e76
1023e8b
7243e76
 
 
 
 
1023e8b
 
 
 
 
 
7243e76
 
 
 
 
 
 
 
 
 
 
 
 
 
5516409
7243e76
 
1023e8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7243e76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a72acc2
7243e76
 
 
 
 
 
 
28dc150
7243e76
 
 
 
 
a72acc2
7243e76
 
 
 
a72acc2
 
7243e76
 
a72acc2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
---
language:
- zh
- en
base_model: openbmb/MiniCPM-2B-sft-bf16
pipeline_tag: text-classification
library_name: transformers
---
## MiniCPM-Reranker

**MiniCPM-Reranker** 是面壁智能与清华大学自然语言处理实验室(THUNLP)共同开发的中英双语言文本重排序模型,有如下特点:
- 出色的中文、英文重排序能力。
- 出色的中英跨语言重排序能力。

MiniCPM-Reranker 基于 [MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) 训练,结构上采取双向注意力。采取多阶段训练方式,共使用包括开源数据、机造数据、闭源数据在内的约 600 万条训练数据。

欢迎关注 RAG 套件系列:

- 检索模型:[MiniCPM-Embedding](https://huggingface.co/openbmb/MiniCPM-Embedding)
- 重排模型:[MiniCPM-Reranker](https://huggingface.co/openbmb/MiniCPM-Reranker)
- 面向 RAG 场景的 LoRA 插件:[MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA)

**MiniCPM-Reranker** is a bilingual & cross-lingual text re-ranking model developed by ModelBest Inc. and THUNLP, featuring:

- Exceptional Chinese and English re-ranking capabilities.
- Outstanding cross-lingual re-ranking capabilities between Chinese and English.

MiniCPM-Reranker is trained based on [MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) and incorporates bidirectional attention in its architecture. The model underwent multi-stage training using approximately 6 million training examples, including open-source, synthetic, and proprietary data.

We also invite you to explore the RAG toolkit series:

- Retrieval Model: [MiniCPM-Embedding](https://huggingface.co/openbmb/MiniCPM-Embedding)
- Re-ranking Model: [MiniCPM-Reranker](https://huggingface.co/openbmb/MiniCPM-Reranker)
- LoRA Plugin for RAG scenarios: [MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA)

## 模型信息 Model Information

- 模型大小:2.4B
- 最大输入token数:1024

- Model Size: 2.4B
- Max Input Tokens: 1024

## 使用方法 Usage

### 输入格式 Input Format

本模型支持指令,输入格式如下:

MiniCPM-Reranker supports instructions in the following format:

```
<s>Instruction: {{ instruction }} Query: {{ query }}</s>{{ document }}
```

例如:

For example:

```
<s>Instruction: 为这个医学问题检索相关回答。Query: 咽喉癌的成因是什么?</s>(文档省略)
```

```
<s>Instruction: Given a claim about climate change, retrieve documents that support or refute the claim. Query: However the warming trend is slower than most climate models have forecast.</s>(document omitted)
```

也可以不提供指令,即采取如下格式:

MiniCPM-Reranker also works in instruction-free mode in the following format:

```
<s>Query: {{ query }}</s>{{ document }}
```

我们在BEIR与C-MTEB/Retrieval上测试时使用的指令见 `instructions.json`,其他测试不使用指令。

When running evaluation on BEIR and C-MTEB/Retrieval, we use instructions in `instructions.json`. For other evaluations, we do not use instructions. 

### 环境要求 Requirements

```
transformers==4.37.2
flash-attn>2.3.5
```

### 示例脚本 Demo

#### Huggingface Transformers

```python
from transformers import AutoModel, LlamaTokenizer, AutoModelForSequenceClassification
import torch
import numpy as np

# from https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/models/xlm_roberta/tokenization_xlm_roberta.py
class MiniCPMRerankerLLamaTokenizer(LlamaTokenizer):
    def build_inputs_with_special_tokens(
            self, token_ids_0, token_ids_1 = None
        ):
            """
            - single sequence: `<s> X </s>`
            - pair of sequences: `<s> A </s> B`

            Args:
                token_ids_0 (`List[int]`):
                    List of IDs to which the special tokens will be added.
                token_ids_1 (`List[int]`, *optional*):
                    Optional second list of IDs for sequence pairs.

            Returns:
                `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
            """

            if token_ids_1 is None:
                return super().build_inputs_with_special_tokens(token_ids_0)
            bos = [self.bos_token_id]
            sep = [self.eos_token_id]
            return bos + token_ids_0 + sep + token_ids_1

model_name = "openbmb/MiniCPM-Reranker"
tokenizer = MiniCPMRerankerLLamaTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.padding_side = "right"

model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True,attn_implementation="flash_attention_2", torch_dtype=torch.float16).to("cuda")
model.eval()

@torch.no_grad()
def rerank(input_query, input_docs):
    tokenized_inputs = tokenizer([[input_query, input_doc] for input_doc in input_docs], return_tensors="pt", padding=True, truncation=True, max_length=1024) 

    for k in tokenized_inputs:
      tokenized_inputs [k] = tokenized_inputs[k].to("cuda")

    outputs = model(**tokenized_inputs)
    score = outputs.logits
    return score.float().detach().cpu().numpy()

queries = ["中国的首都是哪里?"]
passages = [["beijing", "shanghai"]]

INSTRUCTION = "Query: "
queries = [INSTRUCTION + query for query in queries]

scores = []
for i in range(len(queries)):
    print(queries[i])
    scores.append(rerank(queries[i],passages[i]))

print(np.array(scores))  # [[[-4.7460938][-8.8515625]]]
```

#### Sentence Transformer

```python
from sentence_transformers import CrossEncoder
from transformers import LlamaTokenizer
import torch

# from https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/models/xlm_roberta/tokenization_xlm_roberta.py
class MiniCPMRerankerLLamaTokenizer(LlamaTokenizer):
    def build_inputs_with_special_tokens(
            self, token_ids_0, token_ids_1 = None
        ):
            """
            - single sequence: `<s> X </s>`
            - pair of sequences: `<s> A </s> B`

            Args:
                token_ids_0 (`List[int]`):
                    List of IDs to which the special tokens will be added.
                token_ids_1 (`List[int]`, *optional*):
                    Optional second list of IDs for sequence pairs.

            Returns:
                `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
            """

            if token_ids_1 is None:
                return super().build_inputs_with_special_tokens(token_ids_0)
            bos = [self.bos_token_id]
            sep = [self.eos_token_id]
            return bos + token_ids_0 + sep + token_ids_1

model_name = "openbmb/MiniCPM-Reranker"
model = CrossEncoder(model_name,max_length=1024,trust_remote_code=True, automodel_args={"attn_implementation":"flash_attention_2","torch_dtype": torch.float16})
model.tokenizer = MiniCPMRerankerLLamaTokenizer.from_pretrained(model_name, trust_remote_code=True)
model.tokenizer.padding_side = "right"

query = "中国的首都是哪里?"
passages = [["beijing", "shanghai"]]

INSTRUCTION = "Query: "
query = INSTRUCTION + query

sentence_pairs = [[query, doc] for doc in passages]

scores = model.predict(sentence_pairs, convert_to_tensor=True).tolist()
rankings = model.rank(query, passages, return_documents=True, convert_to_tensor=True)

print(scores) # [0.0087432861328125, 0.00020503997802734375]
for ranking in rankings:
    print(f"Score: {ranking['score']:.4f}, Corpus: {ranking['text']}")
  
# ID: 0, Score: 0.0087, Text: beijing
# ID: 1, Score: 0.0002, Text: shanghai
```

## 实验结果 Evaluation Results

### 中文与英文重排序结果 CN/EN Re-ranking Results

中文对`bge-large-zh-v1.5`检索的top-100进行重排,英文对`bge-large-en-v1.5`检索的top-100进行重排。

We re-rank top-100 docments from `bge-large-zh-v1.5` in C-MTEB/Retrieval and from `bge-large-en-v1.5` in BEIR.


| 模型 Model            | C-MTEB/Retrieval (NDCG@10) | BEIR (NDCG@10) |
|----------------------------|-------------------|---------------|
| bge-large-zh-v1.5(Retriever for Chinese)  | 70.46             | -             |
| bge-large-en-v1.5(Retriever for English)  | -                 | 54.29         |
| bge-reranker-v2-m3         | 71.82             | 55.36         |
| bge-reranker-v2-minicpm-28 | 73.51             | 59.86         |
| bge-reranker-v2-gemma      | 71.74             | 60.71         |
| bge-reranker-v2.5-gemma2   | -                 | **63.67**     |
| MiniCPM-Reranker                 | **76.79**         | 61.32        |

### 中英跨语言重排序结果 CN-EN Cross-lingual Re-ranking Results

对bge-m3(Dense)检索的top100进行重排。

We re-rank top-100 documents from `bge-m3` (Dense).

| 模型 Model                      | MKQA En-Zh_CN (Recall@20) | NeuCLIR22 (NDCG@10) | NeuCLIR23 (NDCG@10) |
|------------------------------------|--------------------|--------------------|--------------------|
| bge-m3 (Dense)(Retriever)              | 66.4               | 30.49              | 41.09              |
| jina-reranker-v2-base-multilingual | 69.33              | 36.66              | 50.03              |
| bge-reranker-v2-m3                 | 69.75              | 40.98              | 49.67              |
| gte-multilingual-reranker-base     | 68.51              | 38.74              | 45.3              |
| MiniCPM-Reranker                         | **71.73**          | **43.65**          | **50.59**          |

## 许可证 License

- 本仓库中代码依照 [Apache-2.0 协议](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE)开源。
- MiniCPM-Reranker 模型权重的使用则需要遵循 [MiniCPM 模型协议](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md)。
- MiniCPM-Reranker 模型权重对学术研究完全开放。如需将模型用于商业用途,请填写[此问卷](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g)。

* The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License. 
* The usage of MiniCPM-Reranker model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
* The models and weights of MiniCPM-Reranker are completely free for academic research. After filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, MiniCPM-Reranker weights are also available for free commercial use.