--- pipeline_tag: any-to-any datasets: - openbmb/RLAIF-V-Dataset library_name: transformers language: - multilingual tags: - minicpm-o - omni - vision - ocr - multi-image - video - custom_code - audio - speech - voice cloning - live Streaming - realtime speech conversation - asr - tts ---

A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone

## MiniCPM-o 2.6 int4 This is the int4 quantized version of [**MiniCPM-o 2.6**](https://huggingface.co/openbmb/MiniCPM-o-2_6). Running with int4 version would use lower GPU memory (about 9GB). ### Prepare code and install AutoGPTQ We are submitting PR to officially support minicpm-o 2.6 inference ```python git clone https://github.com/OpenBMB/AutoGPTQ.git && cd AutoGPTQ git checkout minicpmo # install AutoGPTQ pip install -vvv --no-build-isolation -e . ``` ### Usage of **MiniCPM-o-2_6-int4** Change the model initialization part to `AutoGPTQForCausalLM.from_quantized` ```python import torch from transformers import AutoModel, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model = AutoGPTQForCausalLM.from_quantized( 'openbmb/MiniCPM-o-2_6-int4', torch_dtype=torch.bfloat16, device="cuda:0", trust_remote_code=True, disable_exllama=True, disable_exllamav2=True ) tokenizer = AutoTokenizer.from_pretrained( 'openbmb/MiniCPM-o-2_6-int4', trust_remote_code=True ) model.init_tts() ``` Usage reference [MiniCPM-o-2_6#usage](https://huggingface.co/openbmb/MiniCPM-o-2_6#usage)