Update README.md
Browse files
README.md
CHANGED
@@ -1,202 +1,140 @@
|
|
1 |
---
|
2 |
base_model: openbmb/MiniCPM3-4B
|
3 |
library_name: peft
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
|
|
|
|
|
|
17 |
|
|
|
18 |
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
###
|
29 |
|
30 |
-
|
31 |
|
32 |
-
-
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
|
|
|
|
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
|
|
|
|
45 |
|
46 |
-
###
|
47 |
|
48 |
-
|
|
|
|
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
|
|
|
|
|
|
53 |
|
54 |
-
|
|
|
|
|
55 |
|
56 |
-
[
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
|
60 |
-
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
|
|
|
|
63 |
|
64 |
-
|
65 |
|
66 |
-
|
67 |
|
68 |
-
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
Use the code below to get started with the model.
|
73 |
|
74 |
-
|
75 |
|
76 |
-
|
|
|
|
|
77 |
|
78 |
-
|
|
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
- **
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
### Framework versions
|
201 |
-
|
202 |
-
- PEFT 0.12.0
|
|
|
1 |
---
|
2 |
base_model: openbmb/MiniCPM3-4B
|
3 |
library_name: peft
|
4 |
+
license: apache-2.0
|
5 |
+
language:
|
6 |
+
- zh
|
7 |
+
- en
|
8 |
---
|
9 |
|
10 |
+
## MiniCPM3-RAG-LoRA
|
11 |
|
12 |
+
**MiniCPM3-RAG-LoRA** 由面壁智能与清华大学自然语言处理实验室(THUNLP)共同开发,采用直接偏好优化(DPO)方法对 [MiniCPM3](https://huggingface.co/openbmb/MiniCPM3-4B) 进行 LoRA 微调,仅基于两万余条开放域问答和逻辑推理任务的开源数据,在通用评测数据集上实现了模型性能平均提升 13%。
|
13 |
|
14 |
+
欢迎关注 `MiniCPM3` 与 RAG 套件系列:
|
15 |
|
16 |
+
- 生成模型:[MiniCPM3](https://huggingface.co/openbmb/MiniCPM3-4B)
|
17 |
+
- 检索模型:[RankCPM-E](https://huggingface.co/openbmb/RankCPM-E)
|
18 |
+
- 重排模型:[RankCPM-R](https://huggingface.co/openbmb/RankCPM-R)
|
19 |
+
- 面向 RAG 场景的 LoRA 插件:[MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA)
|
20 |
|
21 |
+
**MiniCPM3-RAG-LoRA** developed by ModelBest Inc. and THUNLP, utilizes the Direct Preference Optimization (DPO) method to fine-tune [MiniCPM3](https://huggingface.co/openbmb/MiniCPM3-4B) with LoRA. By training on just over 20,000 open-source data points from open-domain question answering and logical reasoning tasks, the model achieved an average performance improvement of 13% on general benchmark datasets.
|
22 |
|
23 |
+
We also invite you to explore MiniCPM3 and the RAG toolkit series:
|
24 |
|
25 |
+
- Generation Model: [MiniCPM3](https://huggingface.co/openbmb/MiniCPM3-4B)
|
26 |
+
- Retrieval Model: [RankCPM-E](https://huggingface.co/openbmb/RankCPM-E)
|
27 |
+
- Re-ranking Model: [RankCPM-R](https://huggingface.co/openbmb/RankCPM-R)
|
28 |
+
- LoRA Plugin for RAG scenarios: [MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA)
|
29 |
|
30 |
+
## 模型信息 Model Information
|
31 |
|
32 |
+
- 模型大小:4B
|
33 |
+
- Model Size: 2.4B
|
34 |
|
35 |
+
## 模型使用 Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
### 输入格式 Input Format
|
38 |
|
39 |
+
MiniCPM3-RAG-LoRA 模型遵循格式如下:
|
40 |
|
41 |
+
MiniCPM3-RAG-LoRA supports instructions in the following format:
|
|
|
|
|
42 |
|
43 |
+
```
|
44 |
+
Background: {{ passages }} Query: {{ query }}
|
45 |
+
```
|
46 |
|
47 |
+
例如:
|
48 |
|
49 |
+
For example:
|
50 |
|
51 |
+
```
|
52 |
+
Background:
|
53 |
+
["In the novel 'The Silent Watcher,' the lead character is named Alex Carter. Alex is a private detective who uncovers a series of mysterious events in a small town.",
|
54 |
+
"Set in a quiet town, 'The Silent Watcher' follows Alex Carter, a former police officer turned private investigator, as he unravels the town's dark secrets.",
|
55 |
+
"'The Silent Watcher' revolves around Alex Carter's journey as he confronts his past while solving complex cases in his hometown."]
|
56 |
|
57 |
+
Query:
|
58 |
+
"What is the name of the lead character in the novel 'The Silent Watcher'?"
|
59 |
+
```
|
60 |
|
61 |
+
### 环境要求 Requirements
|
62 |
|
63 |
+
```
|
64 |
+
transformers>=4.36.0
|
65 |
+
```
|
66 |
|
67 |
+
### 示例脚本 Demo
|
68 |
|
69 |
+
```python
|
70 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
71 |
+
import torch
|
72 |
+
torch.manual_seed(0)
|
73 |
|
74 |
+
path = 'openbmb/MiniCPM3-RAG-LoRA'
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained(path)
|
76 |
+
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map='cuda', trust_remote_code=True)
|
77 |
|
78 |
+
passages = ["In the novel 'The Silent Watcher,' the lead character is named Alex Carter. Alex is a private detective who uncovers a series of mysterious events in a small town.",
|
79 |
+
"Set in a quiet town, 'The Silent Watcher' follows Alex Carter, a former police officer turned private investigator, as he unravels the town's dark secrets.",
|
80 |
+
"'The Silent Watcher' revolves around Alex Carter's journey as he confronts his past while solving complex cases in his hometown."]
|
81 |
+
query = "What is the name of the lead character in the novel 'The Silent Watcher'?"
|
82 |
|
83 |
+
input_text = 'Background:\n' + str(passages) + '\n\n' + 'Query:\n' + str(query) + '\n\n'
|
84 |
|
85 |
+
messages = [
|
86 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
87 |
+
{"role": "user", "content": input_text},
|
88 |
+
]
|
89 |
+
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
90 |
|
91 |
+
outputs = model.chat(tokenizer, prompt, temperature=0.8, top_p=0.8)
|
92 |
+
print(outputs[0]) # The lead character in the novel 'The Silent Watcher' is named Alex Carter.
|
93 |
+
```
|
94 |
|
95 |
+
## 实验结果 Evaluation Results
|
96 |
|
97 |
+
经过针对RAG场景的LoRA训练后,MiniCPM3-RAG-LoRA在开放域问答(NQ、TQA、MARCO)、多跳问答(HotpotQA)、对话(WoW)、事实核查(FEVER)和信息填充(T-REx)等多项任务上的性能表现,超越Llama3-8B和Baichuan2-13B等业内优秀模型。
|
98 |
|
99 |
+
After being fine-tuned with LoRA for RAG scenarios, MiniCPM3-RAG-LoRA outperforms leading industry models like Llama3-8B and Baichuan2-13B across various tasks, including open-domain question answering (NQ, TQA, MARCO), multi-hop question answering (HotpotQA), dialogue (WoW), fact checking (FEVER), and information filling (T-REx).
|
100 |
|
101 |
+
| | NQ(Acc) | TQA(Acc) | MARCO(ROUGE) | HotpotQA(Acc) | WoW(F1) | FEVER(Acc) | T-REx(Acc) |
|
102 |
+
| :---------------: | :-----: | :------: | :----------: | :-----------: | :-----: | :--------: | :--------: |
|
103 |
+
| Llama3-8B | 45.36 | 83.15 | 20.81 | 28.52 | 10.96 | 78.08 | 26.62 |
|
104 |
+
| Baichuan2-13B | 43.36 | 77.76 | 14.28 | 27.59 | 13.34 | 31.37 | 27.46 |
|
105 |
+
| MiniCPM3 | 43.21 | 80.77 | 16.06 | 26.00 | 14.60 | 87.22 | 26.26 |
|
106 |
+
| MiniCPM3-RAG-LoRA | 48.36 | 82.40 | 27.68 | 31.61 | 16.29 | 85.81 | 40.76 |
|
107 |
|
|
|
108 |
|
109 |
+
## 许可证 License
|
110 |
|
111 |
+
- 本仓库中代码依照 [Apache-2.0 协议](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE)开源。
|
112 |
+
- RankCPM-R 模型权重的使用则需要遵循 [MiniCPM 模型协议](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md)。
|
113 |
+
- RankCPM-R 模型权重对学术研究完全开放。如需将模型用于商业用途,请填写[此问卷](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g)。
|
114 |
|
115 |
+
* The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
|
116 |
+
* The usage of RankCPM-R model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
|
117 |
+
* The models and weights of RankCPM-R are completely free for academic research. After filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, RankCPM-R weights are also available for free commercial use.
|
118 |
+
<!-- ### 测试集介绍:
|
119 |
|
120 |
+
- **Natural Questions (NQ, Accuracy):**
|
121 |
+
- **简介**: Natural Questions 是一个开放域问答数据集,由真实用户在Google搜索中提出的问题组成。数据集中每个问题都有一个长文档作为上下文,并包含短答案和长答案。
|
122 |
+
- **评价指标**: 准确率(Accuracy)用于衡量模型是否能够正确地识别出与问题相关的短答案。
|
123 |
+
- **TriviaQA (TQA, Accuracy):**
|
124 |
+
- **简介:** TriviaQA 是一个涵盖广泛主题的问答数据集,问题和答案从各类问答网站和百科全书中收集而来。
|
125 |
+
- **评价指标:** 准确率(Accuracy)用于衡量模型能否正确地回答这些问题。
|
126 |
+
- **MS MARCO (ROUGE):**
|
127 |
+
- **简介:** MS MARCO 是一个大规模的开放域问答数据集,主要由Bing搜索引擎用户的查询和相应的答案组成。数据集包含简短答案和相关段落,广泛用于信息检索和生成任务。由于MS MARCO数据集规模庞大,我们从中选取了3000条数据进行本次评测。
|
128 |
+
- **评价指标:** ROUGE 用于评估模型生成的答案与参考答案之间的重叠程度,衡量生成答案的质量。
|
129 |
+
- **HotpotQA (Accuracy):**
|
130 |
+
- **简介:** HotpotQA 是一个多跳问答数据集,要求模型通过跨越多个文档的推理来回答复杂问题。该数据集不仅测试模型的答案生成能力,还考察其推理过程的可解释性。
|
131 |
+
- **评价指标:** 准确率(Accuracy)用于衡量模型能否正确地回答需要多跳推理的问题。
|
132 |
+
- **Wizard of Wikipedia (WoW, F1 Score):**
|
133 |
+
- **简介:** Wizard of Wikipedia 是一个对话数据集,专注于知识型对话场景,要求模型能够在对话中生成与主题相关的、丰富的信息,每个对话轮次都有对应的知识库条目作为支持。
|
134 |
+
- **评价指标:** F1 值用于衡量模型生成的回答与参考答案在词级别上的重合情况,评估回答的准确性和全面性。
|
135 |
+
- **FEVER (Accuracy):**
|
136 |
+
- **简介:** FEVER 是一个事实核查数据集,包含大量的陈述句,模型需要根据给定的文档来判断这些陈述句是否为真或假,该数据集旨在测试模型的事实核查能力。
|
137 |
+
- **评价指标:** 准确率(Accuracy)用于评估模型在判断陈述句的真实性方面的表现。
|
138 |
+
- **T-REx (Accuracy):**
|
139 |
+
- **简介:** T-REx 是一个知识库槽填充数据集,包含从维基百科中提取的实体-关系对。模型需要根据上下文信息填充缺失的槽值,测试其对知识库关系的理解和填充能力。
|
140 |
+
- **评价指标:** 准确率(Accuracy)用于衡量模型在正确填充缺失槽值方面的表现。 -->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|