lievan commited on
Commit
bd9182e
•
1 Parent(s): 3f2f02c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -0
README.md CHANGED
@@ -1,3 +1,26 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+
5
+ # News
6
+
7
+ - [2023/09/26]: UltraRM unleashes the power of [UltraLM-13B-v2.0](https://huggingface.co/openbmb/UltraLM-13b-v2.0) and [UltraLM-13B](https://huggingface.co/openbmb/UltraLM-13b)! A simple best-of-16 sampling achieves **92.30%** (UltraLM2, 🥇 in 13B results) and **91.54%** (UltraLM, 🥇 in LLaMA-1 results) win rates against text-davinci-003 on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) benchmark!
8
+ - [2023/09/26]: We release the [UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, along with UltraFeedback-powered reward model [UltraRM](https://huggingface.co/datasets/openbmb/UltraFeedback) and critique model [UltraCM](https://huggingface.co/datasets/openbmb/UltraCM-13b)! Both built **new SOTAs** over open-source models!
9
+
10
+ # Links
11
+
12
+ - 🤗 [UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback)
13
+ - 🤗 [UltraRM](https://huggingface.co/datasets/openbmb/UltraRM-13b)
14
+ - 🤗 [UltraCM](https://huggingface.co/datasets/openbmb/UltraCM-13b)
15
+
16
+ # UltraRM
17
+
18
+ We train and release a reward model UltraRM based on UltraFeedback to further facilitate alignment research. UltraRM is initialized by LLaMA2-13B.
19
+
20
+ Specifically, we train two versions of reward models, where UltraRM-UF is merely fine-tuned on UltraFeedback and UltraRM is fine-tuned on a mixture of UltraFeedback and an equal-size sample from three open-source datasets including [Anthropic HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf), [Standford SHP](https://huggingface.co/datasets/stanfordnlp/SHP), and [Summarization](https://huggingface.co/datasets/openai/summarize_from_feedback).
21
+
22
+ ## Reward Modeling
23
+
24
+ On four public preference test sets, our UltraRM achieves SOTA over other open-source reward models.
25
+
26
+ ## Usage