Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,26 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
|
5 |
+
# News
|
6 |
+
|
7 |
+
- [2023/09/26]: UltraRM unleashes the power of [UltraLM-13B-v2.0](https://huggingface.co/openbmb/UltraLM-13b-v2.0) and [UltraLM-13B](https://huggingface.co/openbmb/UltraLM-13b)! A simple best-of-16 sampling achieves **92.30%** (UltraLM2, 🥇 in 13B results) and **91.54%** (UltraLM, 🥇 in LLaMA-1 results) win rates against text-davinci-003 on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/) benchmark!
|
8 |
+
- [2023/09/26]: We release the [UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, along with UltraFeedback-powered reward model [UltraRM](https://huggingface.co/datasets/openbmb/UltraFeedback) and critique model [UltraCM](https://huggingface.co/datasets/openbmb/UltraCM-13b)! Both built **new SOTAs** over open-source models!
|
9 |
+
|
10 |
+
# Links
|
11 |
+
|
12 |
+
- 🤗 [UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback)
|
13 |
+
- 🤗 [UltraRM](https://huggingface.co/datasets/openbmb/UltraRM-13b)
|
14 |
+
- 🤗 [UltraCM](https://huggingface.co/datasets/openbmb/UltraCM-13b)
|
15 |
+
|
16 |
+
# UltraRM
|
17 |
+
|
18 |
+
We train and release a reward model UltraRM based on UltraFeedback to further facilitate alignment research. UltraRM is initialized by LLaMA2-13B.
|
19 |
+
|
20 |
+
Specifically, we train two versions of reward models, where UltraRM-UF is merely fine-tuned on UltraFeedback and UltraRM is fine-tuned on a mixture of UltraFeedback and an equal-size sample from three open-source datasets including [Anthropic HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf), [Standford SHP](https://huggingface.co/datasets/stanfordnlp/SHP), and [Summarization](https://huggingface.co/datasets/openai/summarize_from_feedback).
|
21 |
+
|
22 |
+
## Reward Modeling
|
23 |
+
|
24 |
+
On four public preference test sets, our UltraRM achieves SOTA over other open-source reward models.
|
25 |
+
|
26 |
+
## Usage
|