File size: 34,430 Bytes
1b34eda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 |
# coding=utf-8
# Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for CpmBee."""
import json
import os
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
from typing_extensions import TypedDict
from transformers.tokenization_utils import PaddingStrategy, PreTrainedTokenizer, TensorType
from transformers.tokenization_utils_base import AddedToken, BatchEncoding, TextInput, TruncationStrategy
from transformers.utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"openbmb/cpm-bee-10b": "https://huggingface.co/openbmb/cpm-bee-10b/blob/main/vocab.txt",
"openbmb/cpm-bee-5b": "https://huggingface.co/openbmb/cpm-bee-5b/blob/main/vocab.txt",
"openbmb/cpm-bee-2b": "https://huggingface.co/openbmb/cpm-bee-2b/blob/main/vocab.txt",
"openbmb/cpm-bee-1b": "https://huggingface.co/openbmb/cpm-bee-1b/blob/main/vocab.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"openbmb/cpm-bee-10b": 4096,
"openbmb/cpm-bee-5b": 4096,
"openbmb/cpm-bee-2b": 4096,
"openbmb/cpm-bee-1b": 4096,
}
class _PrevExtTableStates(TypedDict):
ext_table: Dict[int, str]
token_id_table: Dict[str, Dict[int, int]]
CPMBeeInputType = Union[str, Dict[str, "CPMBeeInputType"]]
def rel_to_bucket(n_up: int, n_down: int, max_depth: int = 8):
ret = n_up * max_depth + n_down
if ret == 0:
return ret
else:
# bucket 1 is reserved for incontext samples
return ret + 1
class _DictTree(TypedDict):
value: str
children: List["_DictTree"]
depth: int
segment_id: int
need_predict: bool
class CpmBeeTokenizer(PreTrainedTokenizer):
"""
Construct a CPMBee tokenizer.
Args:
vocab_file (`str`):
Path to the vocabulary file.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
line_token (`str`, *optional*, defaults to `"\n"`):
The line token.
space_token (`str`, *optional*, defaults to `" "`):
The space token.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The mask token.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding.
padding_side (`str`, *optional*, defaults to `"left"`):
The padding side. CPM-Bee will use left padding by default.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names: List[str] = [
"input_ids",
"attention_mask",
"input_id_sub",
"position",
"context",
"sample_ids",
"num_segments",
"segment",
"segment_rel_offset",
"segment_rel",
]
add_prefix_space = False
def __init__(
self,
vocab_file,
bos_token="<s>",
eos_token="</s>",
line_token="\n",
space_token=" ",
unk_token="<unk>",
mask_token="<mask>",
pad_token="<pad>",
padding_side="left",
**kwargs,
):
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
line_token=line_token,
space_token=space_token,
unk_token=unk_token,
mask_token=mask_token,
pad_token=pad_token,
padding_side=padding_side,
**kwargs,
)
self.encoder: Dict[str, int] = {}
with open(vocab_file, "r", encoding="utf-8") as reader:
for token in reader.readlines():
token = token.rstrip("\n")
if len(token) == 0:
continue
self.encoder[token] = len(self.encoder)
self.encoder[" "] = self.encoder["</_>"]
self.encoder["\n"] = self.encoder["</n>"]
del self.encoder["</_>"]
del self.encoder["</n>"]
self.decoder = {v: k for k, v in self.encoder.items()}
self._max_word_len = max([len(x) for x in self.encoder.keys()])
self.cpmbee_special_tokens = {k: v for k, v in self.encoder.items() if k.startswith("<") and k.endswith(">")}
self.ext_table: Dict[int, str] = {}
self.ext_table_rev: Dict[str, int] = {}
self.token_id_table: Dict[str, Dict[int, int]] = {}
self.ext_special_tokens = []
self.ext_args_for_model = [
"input_id_subs",
"input_pos",
"context",
"segment_ids",
"segment_rel_offset",
"segment_rel",
"sample_ids",
"num_segments",
"predict_segments",
"answer_placeholders",
"ext_table",
"token_id_table",
]
@property
def bod_token_id(self):
return self.encoder[self.bod_token]
@property
def eod_token_id(self):
return self.encoder[self.eod_token]
@property
def newline_id(self):
return self.encoder[self.line_token]
@property
def vocab_size(self) -> int:
return len(self.encoder)
def __len__(self):
"""
Size of the full vocabulary with the added tokens.
"""
return self.vocab_size + len(self.added_tokens_encoder)
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def get_piece(self, text: str) -> str:
"""
Match with maximum length.
"""
len_text = len(text)
for i in range(len(text)):
sub = text[: len_text - i]
if (sub in self.encoder) or (sub in self.added_tokens_encoder):
return sub
return text[0]
def tokenize(self, text: TextInput, **kwargs) -> List[str]:
r"""
Override the `tokenize` to meet the needs of CPMBee:
1. Mark the special token with `<` and `>`. The `<>` will be ignored.
2. Split sentences by the marked special tokens.
3. Record the marked special token by `ext_table` and `ext_table_rev`.
4. Tokenize the sentence without special tokens.
"""
for_cpmbee = kwargs.get("for_cpmbee", False)
all_special_tokens_extended = {
str(t): t for t in self.all_special_tokens_extended if isinstance(t, AddedToken)
}
sentence_split = [""]
is_special_token = False
for i, c in enumerate(text):
if is_special_token:
if c == "<":
tail = sentence_split.pop(-1)
sentence_split[-1] += tail
sentence_split.append(c)
elif c == ">":
# end of special token
sentence_split[-1] += c
if sentence_split[-1] == "<>":
continue
is_special_token = False
sentence_split.append("")
else:
sentence_split[-1] += c
else:
if c == "<":
is_special_token = True
sentence_split.append(c)
else:
sentence_split[-1] += c
if is_special_token:
tail = sentence_split.pop(-1)
sentence_split[-1] += tail
output_tokens = []
for i, part in enumerate(sentence_split):
if (i & 1) == 1:
# special token
output_tokens.append(part)
if for_cpmbee and (part not in self.encoder) and (part not in self.ext_table_rev):
self.ext_table_rev[part] = len(self.ext_table_rev) + self.vocab_size
self.ext_table[self.ext_table_rev[part]] = part
else:
output_tokens.extend(self._tokenize(part, for_cpmbee=for_cpmbee))
# drop spaces
for i, token in enumerate(output_tokens):
if token in self.added_tokens_encoder:
token = all_special_tokens_extended.get(token, None)
left = output_tokens[i - 1] if i > 0 else None
right = output_tokens[i + 1] if i < len(output_tokens) - 1 else None
if isinstance(token, AddedToken):
if token.rstrip and right:
# A bit counter-intuitive but we strip the left of the string
# since tok_extended.rstrip means the special token is eating all white spaces on its right
output_tokens[i + 1] = right.lstrip()
# Strip white spaces on the left
if token.lstrip and left:
output_tokens[i - 1] = left.rstrip() # Opposite here
else:
if right:
output_tokens[i + 1] = right.lstrip()
if left:
output_tokens[i - 1] = left.rstrip()
skipped_tokens = []
for token in output_tokens:
if not token:
continue
else:
skipped_tokens.append(token)
return skipped_tokens
def _tokenize(self, text, **kwargs):
"""
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
vocabulary.
Do NOT take care of added tokens. Record the unk tokens and special tokens in `ext_table` and `ext_table_rev`.
"""
for_cpmbee = kwargs.get("for_cpmbee", False)
output_tokens = []
part_st = 0
last_unk = None
while part_st < len(text):
piece = self.get_piece(text[part_st:])
if piece in self.encoder or self.added_tokens_encoder:
if last_unk is None:
output_tokens.append(piece)
else:
if for_cpmbee and (last_unk not in self.ext_table_rev):
self.ext_table_rev[last_unk] = len(self.ext_table_rev) + self.vocab_size
self.ext_table[self.ext_table_rev[last_unk]] = last_unk
output_tokens.append(last_unk)
output_tokens.append(piece)
last_unk = None
else:
if last_unk is None:
last_unk = piece
else:
last_unk += piece
part_st += len(piece)
if last_unk is not None:
# part end with UNK
if for_cpmbee and (last_unk not in self.ext_table_rev):
self.ext_table_rev[last_unk] = len(self.ext_table_rev) + self.vocab_size
self.ext_table[self.ext_table_rev[last_unk]] = last_unk
output_tokens.append(last_unk)
return output_tokens
def check(self, token):
return token in self.encoder
def convert_tokens_to_string(self, tokens: List[str]) -> str:
return "".join(tokens)
def _convert_token_to_id(self, token: str):
"""Converts a token (str) in an id using the vocab and ext_table."""
if token in self.encoder:
return self.encoder.get(token)
elif token in self.ext_table_rev:
return self.ext_table_rev[token]
elif token in self.added_tokens_encoder:
return self.added_tokens_encoder[token]
else:
return self.unk_token_id
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab and ext_table."""
if index in self.ext_table:
return self.ext_table[index]
elif index in self.added_tokens_decoder:
return self.added_tokens_decoder[index]
else:
if index >= 0:
return self.decoder[index]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
index = 0
self.encoder["</n>"] = self.encoder["\n"]
del self.encoder["\n"]
self.encoder["</_>"] = self.encoder[" "]
del self.encoder[" "]
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.encoder.items(), key=lambda x: x[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
def __call__(self, text, *args, **kwargs):
r"""
CPMBee `call` method will use `_tokenize_cpmbee` when the input type is dict.
"""
if isinstance(text, dict):
return self._batch_tokenize_cpmbee([text], *args, **kwargs)
elif isinstance(text, (list, tuple)):
if isinstance(text[0], dict):
return self._batch_tokenize_cpmbee(text, *args, **kwargs)
else:
return super().__call__(text, *args, **kwargs)
else:
return super().__call__(text, *args, **kwargs)
# 分词
def _tokenize_cpmbee(self, data: TextInput, *args, **kwargs) -> List[str]:
"""
A tokenize method to process dict data. Exclusive for CPMBee.
"""
if isinstance(data, str):
data = json.loads(data)
if not isinstance(data, Dict):
raise TypeError(
"CpmBeeTokenizer input data should be dict or str in dict format, but got {}".format(type(data))
)
# 1. prepare answer placeholder
answer_placeholders = []
def _put_placeholder(data: Any, path: List[str] = []):
if isinstance(data, dict):
ret = {}
for k, v in data.items():
ret[k] = _put_placeholder(v, path + [k])
return ret
else:
answer_placeholders.append(path)
return "<ans_{}>".format(len(answer_placeholders))
data["<ans>"] = _put_placeholder(data["<ans>"])
(
input_ids,
input_id_subs,
context,
segment_ids,
segment_rel,
n_segments,
table_states,
) = self.convert_data_to_id(data, shuffle_answer=False, max_depth=8)
# <ans> mapping from sub to id
sub_ans_map: Dict[int, int] = {}
for fake_id, token_sub in table_states["token_id_table"]["<ans>"].items():
token = table_states["ext_table"][fake_id]
if token.startswith("<ans_") and token.endswith(">"):
ans_id = int(token[5:-1])
sub_ans_map[token_sub] = ans_id
tmp_input_ids = []
tmp_input_sub = []
tmp_input_seg = []
# get predict segments
predict_segments: List[Tuple[int, int]] = []
for i in range(input_ids.shape[0]):
if context[i] == 0:
if input_ids[i] == self.encoder["<ans>"]:
# is ans
# (segment_id, ans_id)
predict_segments.append((segment_ids[i], sub_ans_map[input_id_subs[i]]))
else:
tmp_input_ids.append(input_ids[i])
tmp_input_sub.append(input_id_subs[i])
tmp_input_seg.append(segment_ids[i])
if len(predict_segments) == 0:
raise ValueError("No answer to predict")
input_ids = np.array(tmp_input_ids, dtype=np.int32) # all context
input_id_subs = np.array(tmp_input_sub, dtype=np.int32) # [0, 0, 0, 0, 1, 0, 0, 2, 0, ...]
context = np.full_like(tmp_input_ids, 1, dtype=np.int8) # [1, 1, 1, ...]
segment_ids = np.array(tmp_input_seg, dtype=np.int32) # [0, 0, 0, 1, 1, 1, 2, 2, 2, 2, ...]
sample_ids = np.zeros(input_ids.shape, dtype=np.int32) # [0, 0, 0, 0, ...]
segment_rel_offset = np.zeros(input_ids.shape, dtype=np.int32) # [0, 0, 0, ...]
num_segments = np.full(input_ids.shape, n_segments, dtype=np.int32) # [n_seg, n_seg, n_seg, ...]
input_pos = np.arange(input_ids.shape[0], dtype=np.int32) # [0, 1, 2, 3, 4, ...]
return (
self.prepare_for_model(
input_ids.tolist(),
input_id_subs=input_id_subs.tolist(),
input_pos=input_pos.tolist(),
context=context.tolist(),
segment_ids=segment_ids.tolist(),
segment_rel_offset=segment_rel_offset.tolist(),
segment_rel=segment_rel.tolist(),
sample_ids=sample_ids.tolist(),
num_segments=num_segments.tolist(),
**kwargs,
),
predict_segments,
answer_placeholders,
table_states["ext_table"],
table_states["token_id_table"],
)
def _batch_tokenize_cpmbee(self, data_lst, *args, **kwargs):
"""
Batched _token_cpmbee.
"""
device = kwargs.get("device", "cpu")
return_tensors = kwargs.get("return_tensors", None)
batch_outputs = {}
segment_rel_pack = []
other_info = []
batch_ext_table_map: Dict[Tuple[int, int], int] = {}
batch_ext_table_ids: List[int] = []
batch_ext_table_sub: List[int] = []
for data in data_lst:
self.ext_table = {}
self.ext_table_rev = {}
self.token_id_table = {}
(outputs, predict_segments, answer_placeholders, ext_table, token_id_table) = self._tokenize_cpmbee(
data,
truncation=None,
padding=PaddingStrategy.DO_NOT_PAD.value,
max_length=None,
pad_to_multiple_of=None,
return_attention_mask=False,
return_tensors=None,
)
rev_ext_table = {}
for token, mp in token_id_table.items():
if token == "<ans>":
continue
token_id = self.encoder[token]
for fake_id, token_sub in mp.items():
if token_sub > 0:
if (token_id, token_sub) not in batch_ext_table_map:
batch_ext_table_map[(token_id, token_sub)] = len(batch_ext_table_ids) + self.vocab_size
batch_ext_table_ids.append(token_id)
batch_ext_table_sub.append(token_sub)
rev_ext_table[batch_ext_table_map[(token_id, token_sub)]] = ext_table[fake_id]
else:
rev_ext_table[token_id] = ext_table[fake_id]
segment_rel_pack.append(np.array(outputs.pop("segment_rel")))
other_info.append(
{
"predict_segments": predict_segments,
"answer_placeholders": answer_placeholders,
"ext_table": rev_ext_table,
}
)
for key, value in outputs.items():
if key not in batch_outputs:
batch_outputs[key] = []
batch_outputs[key].append(value)
max_length = max([len(item) for item in batch_outputs[self.model_input_names[0]]])
batch_size = len(batch_outputs[self.model_input_names[0]])
for i in range(batch_size):
inputs = {k: v[i] for k, v in batch_outputs.items()}
for k, v in inputs.items():
required_input = v
needs_to_be_padded = len(required_input) != max_length
if needs_to_be_padded:
difference = max_length - len(required_input)
batch_outputs[k][i] = [self.pad_token_id] * difference + required_input
max_num_rels = 0
for rel in segment_rel_pack:
max_num_rels = max(max_num_rels, rel.shape[0])
padded_rels = np.zeros((len(segment_rel_pack), max_num_rels), dtype=np.int32)
for i, rel in enumerate(segment_rel_pack):
padded_rels[i, : rel.shape[0]] = rel
batch_outputs["segment_rel"] = padded_rels
batch_outputs["batch_ext_table_ids"] = np.array(batch_ext_table_ids, dtype=np.int32)
batch_outputs["batch_ext_table_sub"] = np.array(batch_ext_table_sub, dtype=np.int32)
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
if return_tensors == "pt":
batch_outputs = batch_outputs.to(device=device)
batch_outputs["other_info"] = other_info
return batch_outputs
def convert_data_to_id(
self,
data: Any,
prev_ext_states: Optional[_PrevExtTableStates] = None,
shuffle_answer: bool = True,
max_depth: int = 8,
):
"""
Parse a dict to data ids. Exclusive for CPMBee. It will
1. parse the dict to segments and get segment_rel, which for calculating of position_bias.
2. tokenize every segment.
"""
root: _DictTree = {
"value": "<root>",
"children": [],
"depth": 0,
"segment_id": 0,
"need_predict": False,
}
segments = [root]
def _build_dict_tree(data: CPMBeeInputType, depth: int, need_predict: bool) -> List[_DictTree]:
if isinstance(data, dict):
ret_list: List[_DictTree] = []
curr_items = list(data.items())
if need_predict and shuffle_answer:
access_idx = np.arange(len(curr_items))
np.random.shuffle(access_idx)
curr_items = [curr_items[idx] for idx in access_idx]
for k, v in curr_items:
child_info: _DictTree = {
"value": k,
"children": [],
"depth": depth,
"segment_id": len(segments),
"need_predict": False, # only leaves are contexts
}
segments.append(child_info)
child_info["children"] = _build_dict_tree(
v, depth + 1, need_predict or (depth == 1 and k == "<ans>")
) # elements in <root>.<ans>
ret_list.append(child_info)
return ret_list
else:
assert isinstance(data, str), "Invalid data {}".format(data)
ret: _DictTree = {
"value": data,
"children": [],
"depth": depth,
"segment_id": len(segments),
"need_predict": need_predict,
}
segments.append(ret)
return [ret]
root["children"] = _build_dict_tree(data, 1, False)
num_segments = len(segments)
segment_rel = np.zeros((num_segments * num_segments,), dtype=np.int32)
def _build_segment_rel(node: _DictTree) -> List[Tuple[int, int]]:
ret: List[Tuple[int, int]] = [(node["segment_id"], node["depth"])]
for child in node["children"]:
sub = _build_segment_rel(child)
for seg_id_1, depth_1 in sub:
for seg_id_2, depth_2 in ret:
n_up = min(depth_1 - node["depth"], max_depth - 1)
n_down = min(depth_2 - node["depth"], max_depth - 1)
segment_rel[seg_id_1 * num_segments + seg_id_2] = rel_to_bucket(
n_up, n_down, max_depth=max_depth
)
segment_rel[seg_id_2 * num_segments + seg_id_1] = rel_to_bucket(
n_down, n_up, max_depth=max_depth
)
ret.extend(sub)
return ret
_build_segment_rel(root)
input_ids: List[int] = []
input_id_subs: List[int] = []
segment_bound: List[Tuple[int, int]] = []
if prev_ext_states is not None:
self.ext_table = prev_ext_states["ext_table"]
self.token_id_table = prev_ext_states["token_id_table"]
for seg in segments:
# tokenize
tokens = self.convert_tokens_to_ids(self.tokenize(seg["value"], for_cpmbee=True))
token_id_subs = []
reid_token_ids = []
for idx in tokens:
if idx in self.ext_table:
# unk or special token
token = self.ext_table[idx]
if token.startswith("<") and token.endswith(">"):
# special token
if "_" in token:
token_name = token[1:-1].split("_", maxsplit=1)[0]
else:
token_name = token[1:-1]
token_name = "<{}>".format(token_name)
else:
token_name = "<unk>"
if token_name not in self.token_id_table:
self.token_id_table[token_name] = {}
if idx not in self.token_id_table[token_name]:
self.token_id_table[token_name][idx] = len(self.token_id_table[token_name])
if token_name not in self.encoder:
raise ValueError("Invalid token {}".format(token))
reid_token_ids.append(self.encoder[token_name])
token_id_subs.append(self.token_id_table[token_name][idx])
else:
reid_token_ids.append(idx)
token_id_subs.append(0)
tokens = [self.bos_token_id] + reid_token_ids
token_id_subs = [0] + token_id_subs
# eos_id 表示 no need_predict
if not seg["need_predict"]: # eos
tokens = tokens + [self.eos_token_id]
token_id_subs = token_id_subs + [0]
else:
# no eos
pass
begin = len(input_ids)
input_ids.extend(tokens)
input_id_subs.extend(token_id_subs)
end = len(input_ids)
segment_bound.append((begin, end))
ids = np.array(input_ids, dtype=np.int32)
id_subs = np.array(input_id_subs, dtype=np.int32)
segs = np.zeros((ids.shape[0],), dtype=np.int32) # 按segment_bound对seg编号
context = np.zeros((ids.shape[0],), dtype=np.int8)
for i, (begin, end) in enumerate(segment_bound):
if not segments[i]["need_predict"]:
context[begin:end] = 1
segs[begin:end] = i
curr_ext_table_states: _PrevExtTableStates = {
"ext_table": self.ext_table,
"token_id_table": self.token_id_table,
}
return ids, id_subs, context, segs, segment_rel, num_segments, curr_ext_table_states
def prepare_for_model(
self,
ids: List[int],
pair_ids: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_length: bool = False,
verbose: bool = True,
prepend_batch_axis: bool = False,
**kwargs,
) -> BatchEncoding:
"""
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids*
different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return
overflowing tokens. Such a combination of arguments will raise an error.
Args:
ids (`List[int]`):
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
`convert_tokens_to_ids` methods.
pair_ids (`List[int]`, *optional*):
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
and `convert_tokens_to_ids` methods.
"""
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
pair = bool(pair_ids is not None)
len_ids = len(ids)
len_pair_ids = len(pair_ids) if pair else 0
if return_token_type_ids and not add_special_tokens:
raise ValueError(
"Asking to return token_type_ids while setting add_special_tokens to False "
"results in an undefined behavior. Please set add_special_tokens to True or "
"set return_token_type_ids to None."
)
if (
return_overflowing_tokens
and truncation_strategy == TruncationStrategy.LONGEST_FIRST
and pair_ids is not None
):
raise ValueError(
"Not possible to return overflowing tokens for pair of sequences with the "
"`longest_first`. Please select another truncation strategy than `longest_first`, "
"for instance `only_second` or `only_first`."
)
# Load from model defaults
if return_token_type_ids is None:
return_token_type_ids = "token_type_ids" in self.model_input_names
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
encoded_inputs = {}
# Compute the total size of the returned encodings
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
# Truncation: Handle max sequence length
overflowing_tokens = []
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
ids, pair_ids, overflowing_tokens = self.truncate_sequences(
ids,
pair_ids=pair_ids,
num_tokens_to_remove=total_len - max_length,
truncation_strategy=truncation_strategy,
stride=stride,
)
if return_overflowing_tokens:
encoded_inputs["overflowing_tokens"] = overflowing_tokens
encoded_inputs["num_truncated_tokens"] = total_len - max_length
# Add special tokens
if add_special_tokens:
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
else:
sequence = ids + pair_ids if pair else ids
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
# Build output dictionary
encoded_inputs["input_ids"] = sequence
if return_token_type_ids:
encoded_inputs["token_type_ids"] = token_type_ids
if return_special_tokens_mask:
if add_special_tokens:
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
else:
encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
# Check lengths
self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
# Padding
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
encoded_inputs = self.pad(
encoded_inputs,
max_length=max_length,
padding=padding_strategy.value,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
if return_length:
encoded_inputs["length"] = len(encoded_inputs["input_ids"])
# for CPMBee, encode all the model arguments
for arg in self.ext_args_for_model:
v = kwargs.get(arg, None)
if v is not None:
encoded_inputs[arg] = v
batch_outputs = BatchEncoding(
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
)
return batch_outputs
|