File size: 34,430 Bytes
1b34eda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
# coding=utf-8
# Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for CpmBee."""
import json
import os
from typing import Any, Dict, List, Optional, Tuple, Union

import numpy as np
from typing_extensions import TypedDict

from transformers.tokenization_utils import PaddingStrategy, PreTrainedTokenizer, TensorType
from transformers.tokenization_utils_base import AddedToken, BatchEncoding, TextInput, TruncationStrategy
from transformers.utils import logging


logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "openbmb/cpm-bee-10b": "https://huggingface.co/openbmb/cpm-bee-10b/blob/main/vocab.txt",
        "openbmb/cpm-bee-5b": "https://huggingface.co/openbmb/cpm-bee-5b/blob/main/vocab.txt",
        "openbmb/cpm-bee-2b": "https://huggingface.co/openbmb/cpm-bee-2b/blob/main/vocab.txt",
        "openbmb/cpm-bee-1b": "https://huggingface.co/openbmb/cpm-bee-1b/blob/main/vocab.txt",
    },
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "openbmb/cpm-bee-10b": 4096,
    "openbmb/cpm-bee-5b": 4096,
    "openbmb/cpm-bee-2b": 4096,
    "openbmb/cpm-bee-1b": 4096,
}


class _PrevExtTableStates(TypedDict):
    ext_table: Dict[int, str]
    token_id_table: Dict[str, Dict[int, int]]


CPMBeeInputType = Union[str, Dict[str, "CPMBeeInputType"]]


def rel_to_bucket(n_up: int, n_down: int, max_depth: int = 8):
    ret = n_up * max_depth + n_down
    if ret == 0:
        return ret
    else:
        # bucket 1 is reserved for incontext samples
        return ret + 1


class _DictTree(TypedDict):
    value: str
    children: List["_DictTree"]
    depth: int
    segment_id: int
    need_predict: bool


class CpmBeeTokenizer(PreTrainedTokenizer):
    """
    Construct a CPMBee tokenizer.

    Args:
        vocab_file (`str`):
            Path to the vocabulary file.
        bos_token (`str`, *optional*, defaults to `"<s>"`):
            The beginning of sequence token.
        eos_token (`str`, *optional*, defaults to `"</s>"`):
            The end of sequence token.
        line_token (`str`, *optional*, defaults to `"\n"`):
            The line token.
        space_token (`str`, *optional*, defaults to `" "`):
            The space token.
        unk_token (`str`, *optional*, defaults to `"<unk>"`):
            The unknown token.
        mask_token (`str`, *optional*, defaults to `"<mask>"`):
            The mask token.
        pad_token (`str`, *optional*, defaults to `"<pad>"`):
            The token used for padding.
        padding_side (`str`, *optional*, defaults to `"left"`):
            The padding side. CPM-Bee will use left padding by default.
    """

    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
    model_input_names: List[str] = [
        "input_ids",
        "attention_mask",
        "input_id_sub",
        "position",
        "context",
        "sample_ids",
        "num_segments",
        "segment",
        "segment_rel_offset",
        "segment_rel",
    ]
    add_prefix_space = False

    def __init__(
        self,
        vocab_file,
        bos_token="<s>",
        eos_token="</s>",
        line_token="\n",
        space_token=" ",
        unk_token="<unk>",
        mask_token="<mask>",
        pad_token="<pad>",
        padding_side="left",
        **kwargs,
    ):
        super().__init__(
            bos_token=bos_token,
            eos_token=eos_token,
            line_token=line_token,
            space_token=space_token,
            unk_token=unk_token,
            mask_token=mask_token,
            pad_token=pad_token,
            padding_side=padding_side,
            **kwargs,
        )

        self.encoder: Dict[str, int] = {}

        with open(vocab_file, "r", encoding="utf-8") as reader:
            for token in reader.readlines():
                token = token.rstrip("\n")
                if len(token) == 0:
                    continue
                self.encoder[token] = len(self.encoder)

        self.encoder[" "] = self.encoder["</_>"]
        self.encoder["\n"] = self.encoder["</n>"]
        del self.encoder["</_>"]
        del self.encoder["</n>"]

        self.decoder = {v: k for k, v in self.encoder.items()}

        self._max_word_len = max([len(x) for x in self.encoder.keys()])
        self.cpmbee_special_tokens = {k: v for k, v in self.encoder.items() if k.startswith("<") and k.endswith(">")}

        self.ext_table: Dict[int, str] = {}
        self.ext_table_rev: Dict[str, int] = {}

        self.token_id_table: Dict[str, Dict[int, int]] = {}
        self.ext_special_tokens = []

        self.ext_args_for_model = [
            "input_id_subs",
            "input_pos",
            "context",
            "segment_ids",
            "segment_rel_offset",
            "segment_rel",
            "sample_ids",
            "num_segments",
            "predict_segments",
            "answer_placeholders",
            "ext_table",
            "token_id_table",
        ]

    @property
    def bod_token_id(self):
        return self.encoder[self.bod_token]

    @property
    def eod_token_id(self):
        return self.encoder[self.eod_token]

    @property
    def newline_id(self):
        return self.encoder[self.line_token]

    @property
    def vocab_size(self) -> int:
        return len(self.encoder)

    def __len__(self):
        """
        Size of the full vocabulary with the added tokens.
        """
        return self.vocab_size + len(self.added_tokens_encoder)

    def get_vocab(self):
        return dict(self.encoder, **self.added_tokens_encoder)

    def get_piece(self, text: str) -> str:
        """
        Match with maximum length.
        """
        len_text = len(text)
        for i in range(len(text)):
            sub = text[: len_text - i]
            if (sub in self.encoder) or (sub in self.added_tokens_encoder):
                return sub
        return text[0]

    def tokenize(self, text: TextInput, **kwargs) -> List[str]:
        r"""
        Override the `tokenize` to meet the needs of CPMBee:
        1. Mark the special token with `<` and `>`. The `<>` will be ignored.
        2. Split sentences by the marked special tokens.
        3. Record the marked special token by `ext_table` and `ext_table_rev`.
        4. Tokenize the sentence without special tokens.
        """
        for_cpmbee = kwargs.get("for_cpmbee", False)
        all_special_tokens_extended = {
            str(t): t for t in self.all_special_tokens_extended if isinstance(t, AddedToken)
        }

        sentence_split = [""]
        is_special_token = False
        for i, c in enumerate(text):
            if is_special_token:
                if c == "<":
                    tail = sentence_split.pop(-1)
                    sentence_split[-1] += tail
                    sentence_split.append(c)
                elif c == ">":
                    # end of special token
                    sentence_split[-1] += c
                    if sentence_split[-1] == "<>":
                        continue
                    is_special_token = False
                    sentence_split.append("")
                else:
                    sentence_split[-1] += c
            else:
                if c == "<":
                    is_special_token = True
                    sentence_split.append(c)
                else:
                    sentence_split[-1] += c
        if is_special_token:
            tail = sentence_split.pop(-1)
            sentence_split[-1] += tail

        output_tokens = []
        for i, part in enumerate(sentence_split):
            if (i & 1) == 1:
                # special token
                output_tokens.append(part)
                if for_cpmbee and (part not in self.encoder) and (part not in self.ext_table_rev):
                    self.ext_table_rev[part] = len(self.ext_table_rev) + self.vocab_size
                    self.ext_table[self.ext_table_rev[part]] = part
            else:
                output_tokens.extend(self._tokenize(part, for_cpmbee=for_cpmbee))

        # drop spaces
        for i, token in enumerate(output_tokens):
            if token in self.added_tokens_encoder:
                token = all_special_tokens_extended.get(token, None)
                left = output_tokens[i - 1] if i > 0 else None
                right = output_tokens[i + 1] if i < len(output_tokens) - 1 else None
                if isinstance(token, AddedToken):
                    if token.rstrip and right:
                        # A bit counter-intuitive but we strip the left of the string
                        # since tok_extended.rstrip means the special token is eating all white spaces on its right
                        output_tokens[i + 1] = right.lstrip()
                    # Strip white spaces on the left
                    if token.lstrip and left:
                        output_tokens[i - 1] = left.rstrip()  # Opposite here
                else:
                    if right:
                        output_tokens[i + 1] = right.lstrip()
                    if left:
                        output_tokens[i - 1] = left.rstrip()

        skipped_tokens = []
        for token in output_tokens:
            if not token:
                continue
            else:
                skipped_tokens.append(token)

        return skipped_tokens

    def _tokenize(self, text, **kwargs):
        """
        Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
        vocabulary.

        Do NOT take care of added tokens. Record the unk tokens and special tokens in `ext_table` and `ext_table_rev`.
        """
        for_cpmbee = kwargs.get("for_cpmbee", False)
        output_tokens = []

        part_st = 0
        last_unk = None
        while part_st < len(text):
            piece = self.get_piece(text[part_st:])
            if piece in self.encoder or self.added_tokens_encoder:
                if last_unk is None:
                    output_tokens.append(piece)
                else:
                    if for_cpmbee and (last_unk not in self.ext_table_rev):
                        self.ext_table_rev[last_unk] = len(self.ext_table_rev) + self.vocab_size
                        self.ext_table[self.ext_table_rev[last_unk]] = last_unk
                    output_tokens.append(last_unk)
                    output_tokens.append(piece)
                    last_unk = None
            else:
                if last_unk is None:
                    last_unk = piece
                else:
                    last_unk += piece
            part_st += len(piece)
        if last_unk is not None:
            # part end with UNK
            if for_cpmbee and (last_unk not in self.ext_table_rev):
                self.ext_table_rev[last_unk] = len(self.ext_table_rev) + self.vocab_size
                self.ext_table[self.ext_table_rev[last_unk]] = last_unk
            output_tokens.append(last_unk)

        return output_tokens

    def check(self, token):
        return token in self.encoder

    def convert_tokens_to_string(self, tokens: List[str]) -> str:
        return "".join(tokens)

    def _convert_token_to_id(self, token: str):
        """Converts a token (str) in an id using the vocab and ext_table."""
        if token in self.encoder:
            return self.encoder.get(token)
        elif token in self.ext_table_rev:
            return self.ext_table_rev[token]
        elif token in self.added_tokens_encoder:
            return self.added_tokens_encoder[token]
        else:
            return self.unk_token_id

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab and ext_table."""
        if index in self.ext_table:
            return self.ext_table[index]
        elif index in self.added_tokens_decoder:
            return self.added_tokens_decoder[index]
        else:
            if index >= 0:
                return self.decoder[index]

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        if os.path.isdir(save_directory):
            vocab_file = os.path.join(
                save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
            )
        else:
            vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
        index = 0
        self.encoder["</n>"] = self.encoder["\n"]
        del self.encoder["\n"]
        self.encoder["</_>"] = self.encoder[" "]
        del self.encoder[" "]
        with open(vocab_file, "w", encoding="utf-8") as writer:
            for token, token_index in sorted(self.encoder.items(), key=lambda x: x[1]):
                if index != token_index:
                    logger.warning(
                        f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
                        " Please check that the vocabulary is not corrupted!"
                    )
                    index = token_index
                writer.write(token + "\n")
                index += 1
        return (vocab_file,)

    def __call__(self, text, *args, **kwargs):
        r"""
        CPMBee `call` method will use `_tokenize_cpmbee` when the input type is dict.
        """
        if isinstance(text, dict):
            return self._batch_tokenize_cpmbee([text], *args, **kwargs)
        elif isinstance(text, (list, tuple)):
            if isinstance(text[0], dict):
                return self._batch_tokenize_cpmbee(text, *args, **kwargs)
            else:
                return super().__call__(text, *args, **kwargs)
        else:
            return super().__call__(text, *args, **kwargs)

    # 分词
    def _tokenize_cpmbee(self, data: TextInput, *args, **kwargs) -> List[str]:
        """
        A tokenize method to process dict data. Exclusive for CPMBee.
        """
        if isinstance(data, str):
            data = json.loads(data)
        if not isinstance(data, Dict):
            raise TypeError(
                "CpmBeeTokenizer input data should be dict or str in dict format, but got {}".format(type(data))
            )

        # 1. prepare answer placeholder
        answer_placeholders = []

        def _put_placeholder(data: Any, path: List[str] = []):
            if isinstance(data, dict):
                ret = {}
                for k, v in data.items():
                    ret[k] = _put_placeholder(v, path + [k])
                return ret
            else:
                answer_placeholders.append(path)
                return "<ans_{}>".format(len(answer_placeholders))

        data["<ans>"] = _put_placeholder(data["<ans>"])

        (
            input_ids,
            input_id_subs,
            context,
            segment_ids,
            segment_rel,
            n_segments,
            table_states,
        ) = self.convert_data_to_id(data, shuffle_answer=False, max_depth=8)

        # <ans> mapping from sub to id
        sub_ans_map: Dict[int, int] = {}
        for fake_id, token_sub in table_states["token_id_table"]["<ans>"].items():
            token = table_states["ext_table"][fake_id]
            if token.startswith("<ans_") and token.endswith(">"):
                ans_id = int(token[5:-1])
                sub_ans_map[token_sub] = ans_id

        tmp_input_ids = []
        tmp_input_sub = []
        tmp_input_seg = []

        # get predict segments
        predict_segments: List[Tuple[int, int]] = []
        for i in range(input_ids.shape[0]):
            if context[i] == 0:
                if input_ids[i] == self.encoder["<ans>"]:
                    # is ans
                    # (segment_id, ans_id)
                    predict_segments.append((segment_ids[i], sub_ans_map[input_id_subs[i]]))
            else:
                tmp_input_ids.append(input_ids[i])
                tmp_input_sub.append(input_id_subs[i])
                tmp_input_seg.append(segment_ids[i])

        if len(predict_segments) == 0:
            raise ValueError("No answer to predict")

        input_ids = np.array(tmp_input_ids, dtype=np.int32)  # all context
        input_id_subs = np.array(tmp_input_sub, dtype=np.int32)  # [0, 0, 0, 0, 1, 0, 0, 2, 0, ...]
        context = np.full_like(tmp_input_ids, 1, dtype=np.int8)  # [1, 1, 1, ...]
        segment_ids = np.array(tmp_input_seg, dtype=np.int32)  # [0, 0, 0, 1, 1, 1, 2, 2, 2, 2, ...]
        sample_ids = np.zeros(input_ids.shape, dtype=np.int32)  # [0, 0, 0, 0, ...]
        segment_rel_offset = np.zeros(input_ids.shape, dtype=np.int32)  # [0, 0, 0, ...]
        num_segments = np.full(input_ids.shape, n_segments, dtype=np.int32)  # [n_seg, n_seg, n_seg, ...]
        input_pos = np.arange(input_ids.shape[0], dtype=np.int32)  # [0, 1, 2, 3, 4, ...]

        return (
            self.prepare_for_model(
                input_ids.tolist(),
                input_id_subs=input_id_subs.tolist(),
                input_pos=input_pos.tolist(),
                context=context.tolist(),
                segment_ids=segment_ids.tolist(),
                segment_rel_offset=segment_rel_offset.tolist(),
                segment_rel=segment_rel.tolist(),
                sample_ids=sample_ids.tolist(),
                num_segments=num_segments.tolist(),
                **kwargs,
            ),
            predict_segments,
            answer_placeholders,
            table_states["ext_table"],
            table_states["token_id_table"],
        )

    def _batch_tokenize_cpmbee(self, data_lst, *args, **kwargs):
        """
        Batched _token_cpmbee.
        """
        device = kwargs.get("device", "cpu")
        return_tensors = kwargs.get("return_tensors", None)
        batch_outputs = {}
        segment_rel_pack = []
        other_info = []

        batch_ext_table_map: Dict[Tuple[int, int], int] = {}
        batch_ext_table_ids: List[int] = []
        batch_ext_table_sub: List[int] = []

        for data in data_lst:
            self.ext_table = {}
            self.ext_table_rev = {}
            self.token_id_table = {}
            (outputs, predict_segments, answer_placeholders, ext_table, token_id_table) = self._tokenize_cpmbee(
                data,
                truncation=None,
                padding=PaddingStrategy.DO_NOT_PAD.value,
                max_length=None,
                pad_to_multiple_of=None,
                return_attention_mask=False,
                return_tensors=None,
            )
            rev_ext_table = {}
            for token, mp in token_id_table.items():
                if token == "<ans>":
                    continue
                token_id = self.encoder[token]
                for fake_id, token_sub in mp.items():
                    if token_sub > 0:
                        if (token_id, token_sub) not in batch_ext_table_map:
                            batch_ext_table_map[(token_id, token_sub)] = len(batch_ext_table_ids) + self.vocab_size
                            batch_ext_table_ids.append(token_id)
                            batch_ext_table_sub.append(token_sub)
                        rev_ext_table[batch_ext_table_map[(token_id, token_sub)]] = ext_table[fake_id]
                    else:
                        rev_ext_table[token_id] = ext_table[fake_id]

            segment_rel_pack.append(np.array(outputs.pop("segment_rel")))
            other_info.append(
                {
                    "predict_segments": predict_segments,
                    "answer_placeholders": answer_placeholders,
                    "ext_table": rev_ext_table,
                }
            )

            for key, value in outputs.items():
                if key not in batch_outputs:
                    batch_outputs[key] = []
                batch_outputs[key].append(value)

        max_length = max([len(item) for item in batch_outputs[self.model_input_names[0]]])
        batch_size = len(batch_outputs[self.model_input_names[0]])
        for i in range(batch_size):
            inputs = {k: v[i] for k, v in batch_outputs.items()}

            for k, v in inputs.items():
                required_input = v

                needs_to_be_padded = len(required_input) != max_length

                if needs_to_be_padded:
                    difference = max_length - len(required_input)
                    batch_outputs[k][i] = [self.pad_token_id] * difference + required_input

        max_num_rels = 0
        for rel in segment_rel_pack:
            max_num_rels = max(max_num_rels, rel.shape[0])
        padded_rels = np.zeros((len(segment_rel_pack), max_num_rels), dtype=np.int32)
        for i, rel in enumerate(segment_rel_pack):
            padded_rels[i, : rel.shape[0]] = rel
        batch_outputs["segment_rel"] = padded_rels
        batch_outputs["batch_ext_table_ids"] = np.array(batch_ext_table_ids, dtype=np.int32)
        batch_outputs["batch_ext_table_sub"] = np.array(batch_ext_table_sub, dtype=np.int32)
        batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
        if return_tensors == "pt":
            batch_outputs = batch_outputs.to(device=device)
        batch_outputs["other_info"] = other_info

        return batch_outputs

    def convert_data_to_id(
        self,
        data: Any,
        prev_ext_states: Optional[_PrevExtTableStates] = None,
        shuffle_answer: bool = True,
        max_depth: int = 8,
    ):
        """
        Parse a dict to data ids. Exclusive for CPMBee. It will
        1. parse the dict to segments and get segment_rel, which for calculating of position_bias.
        2. tokenize every segment.
        """
        root: _DictTree = {
            "value": "<root>",
            "children": [],
            "depth": 0,
            "segment_id": 0,
            "need_predict": False,
        }

        segments = [root]

        def _build_dict_tree(data: CPMBeeInputType, depth: int, need_predict: bool) -> List[_DictTree]:
            if isinstance(data, dict):
                ret_list: List[_DictTree] = []
                curr_items = list(data.items())
                if need_predict and shuffle_answer:
                    access_idx = np.arange(len(curr_items))
                    np.random.shuffle(access_idx)
                    curr_items = [curr_items[idx] for idx in access_idx]
                for k, v in curr_items:
                    child_info: _DictTree = {
                        "value": k,
                        "children": [],
                        "depth": depth,
                        "segment_id": len(segments),
                        "need_predict": False,  # only leaves are contexts
                    }
                    segments.append(child_info)
                    child_info["children"] = _build_dict_tree(
                        v, depth + 1, need_predict or (depth == 1 and k == "<ans>")
                    )  # elements in <root>.<ans>

                    ret_list.append(child_info)
                return ret_list
            else:
                assert isinstance(data, str), "Invalid data {}".format(data)
                ret: _DictTree = {
                    "value": data,
                    "children": [],
                    "depth": depth,
                    "segment_id": len(segments),
                    "need_predict": need_predict,
                }
                segments.append(ret)
                return [ret]

        root["children"] = _build_dict_tree(data, 1, False)

        num_segments = len(segments)
        segment_rel = np.zeros((num_segments * num_segments,), dtype=np.int32)

        def _build_segment_rel(node: _DictTree) -> List[Tuple[int, int]]:
            ret: List[Tuple[int, int]] = [(node["segment_id"], node["depth"])]
            for child in node["children"]:
                sub = _build_segment_rel(child)
                for seg_id_1, depth_1 in sub:
                    for seg_id_2, depth_2 in ret:
                        n_up = min(depth_1 - node["depth"], max_depth - 1)
                        n_down = min(depth_2 - node["depth"], max_depth - 1)
                        segment_rel[seg_id_1 * num_segments + seg_id_2] = rel_to_bucket(
                            n_up, n_down, max_depth=max_depth
                        )
                        segment_rel[seg_id_2 * num_segments + seg_id_1] = rel_to_bucket(
                            n_down, n_up, max_depth=max_depth
                        )
                ret.extend(sub)
            return ret

        _build_segment_rel(root)

        input_ids: List[int] = []
        input_id_subs: List[int] = []
        segment_bound: List[Tuple[int, int]] = []

        if prev_ext_states is not None:
            self.ext_table = prev_ext_states["ext_table"]
            self.token_id_table = prev_ext_states["token_id_table"]

        for seg in segments:
            # tokenize
            tokens = self.convert_tokens_to_ids(self.tokenize(seg["value"], for_cpmbee=True))

            token_id_subs = []
            reid_token_ids = []
            for idx in tokens:
                if idx in self.ext_table:
                    # unk or special token
                    token = self.ext_table[idx]
                    if token.startswith("<") and token.endswith(">"):
                        # special token
                        if "_" in token:
                            token_name = token[1:-1].split("_", maxsplit=1)[0]
                        else:
                            token_name = token[1:-1]
                        token_name = "<{}>".format(token_name)
                    else:
                        token_name = "<unk>"

                    if token_name not in self.token_id_table:
                        self.token_id_table[token_name] = {}
                    if idx not in self.token_id_table[token_name]:
                        self.token_id_table[token_name][idx] = len(self.token_id_table[token_name])
                    if token_name not in self.encoder:
                        raise ValueError("Invalid token {}".format(token))
                    reid_token_ids.append(self.encoder[token_name])
                    token_id_subs.append(self.token_id_table[token_name][idx])
                else:
                    reid_token_ids.append(idx)
                    token_id_subs.append(0)
            tokens = [self.bos_token_id] + reid_token_ids
            token_id_subs = [0] + token_id_subs
            # eos_id 表示 no need_predict
            if not seg["need_predict"]:  # eos
                tokens = tokens + [self.eos_token_id]
                token_id_subs = token_id_subs + [0]
            else:
                # no eos
                pass
            begin = len(input_ids)
            input_ids.extend(tokens)
            input_id_subs.extend(token_id_subs)
            end = len(input_ids)
            segment_bound.append((begin, end))

        ids = np.array(input_ids, dtype=np.int32)
        id_subs = np.array(input_id_subs, dtype=np.int32)
        segs = np.zeros((ids.shape[0],), dtype=np.int32)  # 按segment_bound对seg编号
        context = np.zeros((ids.shape[0],), dtype=np.int8)
        for i, (begin, end) in enumerate(segment_bound):
            if not segments[i]["need_predict"]:
                context[begin:end] = 1
            segs[begin:end] = i

        curr_ext_table_states: _PrevExtTableStates = {
            "ext_table": self.ext_table,
            "token_id_table": self.token_id_table,
        }
        return ids, id_subs, context, segs, segment_rel, num_segments, curr_ext_table_states

    def prepare_for_model(
        self,
        ids: List[int],
        pair_ids: Optional[List[int]] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length: Optional[int] = None,
        stride: int = 0,
        pad_to_multiple_of: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        prepend_batch_axis: bool = False,
        **kwargs,
    ) -> BatchEncoding:
        """
        Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
        adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
        manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids*
        different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return
        overflowing tokens. Such a combination of arguments will raise an error.

        Args:
            ids (`List[int]`):
                Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
                `convert_tokens_to_ids` methods.
            pair_ids (`List[int]`, *optional*):
                Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
                and `convert_tokens_to_ids` methods.
        """

        # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
        padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
            padding=padding,
            truncation=truncation,
            max_length=max_length,
            pad_to_multiple_of=pad_to_multiple_of,
            verbose=verbose,
            **kwargs,
        )

        pair = bool(pair_ids is not None)
        len_ids = len(ids)
        len_pair_ids = len(pair_ids) if pair else 0

        if return_token_type_ids and not add_special_tokens:
            raise ValueError(
                "Asking to return token_type_ids while setting add_special_tokens to False "
                "results in an undefined behavior. Please set add_special_tokens to True or "
                "set return_token_type_ids to None."
            )

        if (
            return_overflowing_tokens
            and truncation_strategy == TruncationStrategy.LONGEST_FIRST
            and pair_ids is not None
        ):
            raise ValueError(
                "Not possible to return overflowing tokens for pair of sequences with the "
                "`longest_first`. Please select another truncation strategy than `longest_first`, "
                "for instance `only_second` or `only_first`."
            )

        # Load from model defaults
        if return_token_type_ids is None:
            return_token_type_ids = "token_type_ids" in self.model_input_names
        if return_attention_mask is None:
            return_attention_mask = "attention_mask" in self.model_input_names

        encoded_inputs = {}

        # Compute the total size of the returned encodings
        total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)

        # Truncation: Handle max sequence length
        overflowing_tokens = []
        if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
            ids, pair_ids, overflowing_tokens = self.truncate_sequences(
                ids,
                pair_ids=pair_ids,
                num_tokens_to_remove=total_len - max_length,
                truncation_strategy=truncation_strategy,
                stride=stride,
            )

        if return_overflowing_tokens:
            encoded_inputs["overflowing_tokens"] = overflowing_tokens
            encoded_inputs["num_truncated_tokens"] = total_len - max_length

        # Add special tokens
        if add_special_tokens:
            sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
            token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
        else:
            sequence = ids + pair_ids if pair else ids
            token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])

        # Build output dictionary
        encoded_inputs["input_ids"] = sequence
        if return_token_type_ids:
            encoded_inputs["token_type_ids"] = token_type_ids
        if return_special_tokens_mask:
            if add_special_tokens:
                encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
            else:
                encoded_inputs["special_tokens_mask"] = [0] * len(sequence)

        # Check lengths
        self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)

        # Padding
        if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
            encoded_inputs = self.pad(
                encoded_inputs,
                max_length=max_length,
                padding=padding_strategy.value,
                pad_to_multiple_of=pad_to_multiple_of,
                return_attention_mask=return_attention_mask,
            )

        if return_length:
            encoded_inputs["length"] = len(encoded_inputs["input_ids"])

        # for CPMBee, encode all the model arguments
        for arg in self.ext_args_for_model:
            v = kwargs.get(arg, None)
            if v is not None:
                encoded_inputs[arg] = v

        batch_outputs = BatchEncoding(
            encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
        )

        return batch_outputs