Gong Baitao
commited on
Commit
·
02b2bad
1
Parent(s):
4a399fc
Update modeling_cpmbee.py
Browse files- modeling_cpmbee.py +244 -4
modeling_cpmbee.py
CHANGED
@@ -451,7 +451,7 @@ class CpmBeeEncoder(nn.Module):
|
|
451 |
hidden_states, attn_weights, current_key_value = layer_outputs
|
452 |
if output_attentions:
|
453 |
all_self_attns += (attn_weights,)
|
454 |
-
if
|
455 |
current_key_values = current_key_values + (current_key_value,)
|
456 |
|
457 |
hidden_states = self.output_layernorm(hidden_states)
|
@@ -734,6 +734,125 @@ class CpmBeeModel(CpmBeePreTrainedModel):
|
|
734 |
config_class=_CONFIG_FOR_DOC,
|
735 |
)
|
736 |
def forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
737 |
self,
|
738 |
input_ids: torch.Tensor,
|
739 |
input_id_sub: Optional[torch.Tensor] = None,
|
@@ -1140,6 +1259,127 @@ class CpmBeeForCausalLM(CpmBeePreTrainedModel):
|
|
1140 |
config_class=_CONFIG_FOR_DOC,
|
1141 |
)
|
1142 |
def forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1143 |
self,
|
1144 |
input_ids: Optional[torch.Tensor] = None,
|
1145 |
input_id_sub: Optional[torch.Tensor] = None,
|
@@ -1234,7 +1474,7 @@ class CpmBeeForCausalLM(CpmBeePreTrainedModel):
|
|
1234 |
"""
|
1235 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1236 |
|
1237 |
-
model_output = self.cpmbee(
|
1238 |
input_ids,
|
1239 |
input_id_sub,
|
1240 |
position,
|
@@ -1533,7 +1773,7 @@ class CpmBeeForCausalLM(CpmBeePreTrainedModel):
|
|
1533 |
# init inference
|
1534 |
model_inputs, input_ids = self.prepare_inputs_for_generation(input_ids, batch_size, **model_kwargs)
|
1535 |
pred_start_index = input_ids.size(-1)
|
1536 |
-
outputs = self(
|
1537 |
**model_inputs,
|
1538 |
return_dict=True,
|
1539 |
output_attentions=output_attentions,
|
@@ -1578,7 +1818,7 @@ class CpmBeeForCausalLM(CpmBeePreTrainedModel):
|
|
1578 |
input_ids, batch_size, beam_scorer, **model_kwargs
|
1579 |
)
|
1580 |
|
1581 |
-
outputs = self(
|
1582 |
**model_inputs,
|
1583 |
return_dict=True,
|
1584 |
output_attentions=output_attentions,
|
|
|
451 |
hidden_states, attn_weights, current_key_value = layer_outputs
|
452 |
if output_attentions:
|
453 |
all_self_attns += (attn_weights,)
|
454 |
+
if current_key_values is not None:
|
455 |
current_key_values = current_key_values + (current_key_value,)
|
456 |
|
457 |
hidden_states = self.output_layernorm(hidden_states)
|
|
|
734 |
config_class=_CONFIG_FOR_DOC,
|
735 |
)
|
736 |
def forward(
|
737 |
+
self,
|
738 |
+
input_ids: torch.Tensor,
|
739 |
+
input_id_sub: Optional[torch.Tensor] = None,
|
740 |
+
length: Optional[torch.Tensor] = None,
|
741 |
+
context: Optional[torch.Tensor] = None,
|
742 |
+
sample_ids: Optional[torch.Tensor] = None,
|
743 |
+
num_segments: Optional[torch.Tensor] = None,
|
744 |
+
segment: Optional[torch.Tensor] = None,
|
745 |
+
segment_rel_offset: Optional[torch.Tensor] = None,
|
746 |
+
segment_rel: Optional[torch.Tensor] = None,
|
747 |
+
span: Optional[Dict] = None,
|
748 |
+
output_attentions: Optional[bool] = None,
|
749 |
+
output_hidden_states: Optional[bool] = None,
|
750 |
+
past_key_values: Optional[List] = None,
|
751 |
+
use_cache: Optional[bool] = None,
|
752 |
+
return_dict: Optional[bool] = None,
|
753 |
+
**kwargs,
|
754 |
+
):
|
755 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
756 |
+
output_hidden_states = (
|
757 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
758 |
+
)
|
759 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
760 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
761 |
+
|
762 |
+
# dummy setting for common tests
|
763 |
+
if input_id_sub is None:
|
764 |
+
dtype, device = input_ids.dtype, input_ids.device
|
765 |
+
batch, seq_length = input_ids.size()
|
766 |
+
segment = torch.where(input_ids != 0, 2, 0).to(dtype=dtype, device=device)
|
767 |
+
context = torch.full((batch, seq_length), 1, dtype=dtype, device=device)
|
768 |
+
position = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1)
|
769 |
+
input_id_sub = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
|
770 |
+
segment_rel_offset = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
|
771 |
+
segment_rel = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
|
772 |
+
num_segments = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
|
773 |
+
sample_ids = torch.zeros_like(input_ids)
|
774 |
+
|
775 |
+
with torch.no_grad():
|
776 |
+
batch = input_ids.size(0)
|
777 |
+
seqlen = input_ids.size(1)
|
778 |
+
device = input_ids.device
|
779 |
+
|
780 |
+
# calc segment bucket
|
781 |
+
segment_rel_2d = torch.masked_fill(
|
782 |
+
segment[:, :, None] * num_segments[:, :, None]
|
783 |
+
+ segment[:, None, :]
|
784 |
+
+ segment_rel_offset[:, :, None],
|
785 |
+
~(
|
786 |
+
(sample_ids[:, :, None] == sample_ids[:, None, :])
|
787 |
+
& (span[:, None, :] == span[:, :, None])
|
788 |
+
), # not in the same span or sample
|
789 |
+
0, # avoid torch.gather overflow
|
790 |
+
).view(batch, seqlen * seqlen)
|
791 |
+
|
792 |
+
segment_bucket = torch.gather(
|
793 |
+
input=segment_rel,
|
794 |
+
dim=1,
|
795 |
+
index=segment_rel_2d.long(),
|
796 |
+
).view(batch, seqlen, seqlen)
|
797 |
+
|
798 |
+
segment_bucket.masked_fill_(
|
799 |
+
~(
|
800 |
+
(sample_ids[:, :, None] == sample_ids[:, None, :])
|
801 |
+
& (span[:, None, :] == span[:, :, None])
|
802 |
+
), # not in the same span or sample
|
803 |
+
1, # bucket is used for in-context samples
|
804 |
+
)
|
805 |
+
|
806 |
+
# directional mask
|
807 |
+
directional_mask_2d = torch.arange(seqlen, device=device) <= torch.arange(
|
808 |
+
seqlen, device=device
|
809 |
+
).view(-1, 1)
|
810 |
+
# sample mask
|
811 |
+
sample_mask_2d = (sample_ids[:, :, None] == 0) | (
|
812 |
+
sample_ids[:, :, None] == sample_ids[:, None, :]
|
813 |
+
)
|
814 |
+
# context mask
|
815 |
+
attention_mask = context[:, None, :] | (
|
816 |
+
context[:, :, None].logical_not() & directional_mask_2d.view(1, seqlen, seqlen)
|
817 |
+
)
|
818 |
+
# span mask
|
819 |
+
attention_mask = (
|
820 |
+
attention_mask & sample_mask_2d & (span[:, None, :] == span[:, :, None])
|
821 |
+
)
|
822 |
+
# length mask
|
823 |
+
mask_1d = (
|
824 |
+
torch.arange(seqlen, device=device)[None, :].repeat(batch, 1) < length[:, None]
|
825 |
+
)
|
826 |
+
attention_mask = (
|
827 |
+
mask_1d.view(batch, seqlen, 1) & mask_1d.view(batch, 1, seqlen) & attention_mask
|
828 |
+
)
|
829 |
+
position = torch.arange(seqlen, device=device).expand(batch, seqlen)
|
830 |
+
|
831 |
+
hidden_states = self.input_embedding(input_ids, input_id_sub)
|
832 |
+
position_bias = self.position_bias(position, position, segment_bucket)
|
833 |
+
hidden_states, present_key_values, all_hidden_states, all_attentions = self.encoder(
|
834 |
+
hidden_states,
|
835 |
+
attention_mask,
|
836 |
+
position_bias,
|
837 |
+
output_attentions,
|
838 |
+
output_hidden_states,
|
839 |
+
past_key_values=None,
|
840 |
+
use_cache=False
|
841 |
+
)
|
842 |
+
|
843 |
+
if not return_dict:
|
844 |
+
return tuple(
|
845 |
+
v for v in [hidden_states, present_key_values, all_hidden_states, all_attentions] if v is not None
|
846 |
+
)
|
847 |
+
|
848 |
+
return BaseModelOutputWithPast(
|
849 |
+
last_hidden_state=hidden_states,
|
850 |
+
past_key_values=present_key_values,
|
851 |
+
hidden_states=all_hidden_states,
|
852 |
+
attentions=all_attentions,
|
853 |
+
)
|
854 |
+
|
855 |
+
def inference(
|
856 |
self,
|
857 |
input_ids: torch.Tensor,
|
858 |
input_id_sub: Optional[torch.Tensor] = None,
|
|
|
1259 |
config_class=_CONFIG_FOR_DOC,
|
1260 |
)
|
1261 |
def forward(
|
1262 |
+
self,
|
1263 |
+
input_ids: Optional[torch.Tensor] = None,
|
1264 |
+
input_id_sub: Optional[torch.Tensor] = None,
|
1265 |
+
length: Optional[torch.Tensor] = None,
|
1266 |
+
context: Optional[torch.Tensor] = None,
|
1267 |
+
sample_ids: Optional[torch.Tensor] = None,
|
1268 |
+
num_segments: Optional[torch.Tensor] = None,
|
1269 |
+
segment: Optional[torch.Tensor] = None,
|
1270 |
+
segment_rel_offset: Optional[torch.Tensor] = None,
|
1271 |
+
segment_rel: Optional[torch.Tensor] = None,
|
1272 |
+
span: Optional[torch.Tensor] = None,
|
1273 |
+
output_attentions: Optional[bool] = None,
|
1274 |
+
output_hidden_states: Optional[bool] = None,
|
1275 |
+
past_key_values: Optional[List] = None,
|
1276 |
+
use_cache: Optional[bool] = None,
|
1277 |
+
labels: Optional[torch.Tensor] = None,
|
1278 |
+
return_dict: Optional[bool] = None,
|
1279 |
+
ext_table_ids: Optional[torch.Tensor] = None, # (ext_table_size) int32
|
1280 |
+
ext_table_sub: Optional[torch.Tensor] = None, # (ext_table_size) int32
|
1281 |
+
**kwargs,
|
1282 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1283 |
+
r"""
|
1284 |
+
Args:
|
1285 |
+
input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
1286 |
+
Indices of input sequence tokens in the vocabulary.
|
1287 |
+
|
1288 |
+
Indices can be obtained using [`CPMBeeTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1289 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1290 |
+
|
1291 |
+
[What are input IDs?](../glossary#input-ids)
|
1292 |
+
input_id_sub (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
1293 |
+
Subscription of input sequence tokens in the vocabulary.
|
1294 |
+
|
1295 |
+
Subscription of normal text will be zero while the special tokens of each group will be the 0, 1, 2,
|
1296 |
+
... <ans_0>, <ans_1>, <ans_2> ... belongs to group <ans>. <mask_0>, <mask_1>, <mask_2> ... belongs to
|
1297 |
+
group <mask>.
|
1298 |
+
length (`torch.Tensor` of shape `(batch_size)`):
|
1299 |
+
The length of sequences in batch.
|
1300 |
+
context (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
1301 |
+
Whether this token id is context or not. If is context, the value is 1. If not, the value is 0. If a
|
1302 |
+
token id is context, it does not need to be predicted.
|
1303 |
+
sample_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
1304 |
+
Give a sample id to every token id. The token ids with same sample ids belongs to the same sample.
|
1305 |
+
num_segments (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
1306 |
+
Total number of segments in the current input.
|
1307 |
+
segment (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
1308 |
+
Give a segment id to every token id. The token ids with same segment ids belongs to the same sample.
|
1309 |
+
|
1310 |
+
Generally, a string key or value in input data will be a segment. For example, input {"input": "hello,
|
1311 |
+
", "<ans>": ""}, the segments includes: "input", "hello, ", "<ans>" and "".
|
1312 |
+
segment_rel_offset (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
1313 |
+
The offset of segment rel.
|
1314 |
+
segment_rel (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
1315 |
+
The segment relevance. A relative implementation of measuring the importance of segments.
|
1316 |
+
span (`Dict[str, Union[torch.Tensor, List]]`):
|
1317 |
+
Span will record every input_ids shape.
|
1318 |
+
output_attentions (`bool`, *optional*):
|
1319 |
+
Whether or not to return the attentions tensors of all attention layers.
|
1320 |
+
output_hidden_states (`bool`, *optional*):
|
1321 |
+
Whether or not to return the hidden states of all layers.
|
1322 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1323 |
+
A dummy arguments for CPMBee. The `past_states` contains pre-computed hidden-states (key and values in
|
1324 |
+
the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values`
|
1325 |
+
input) and other history arguments to speed up sequential decoding.
|
1326 |
+
use_cache (`bool`, *optional*):
|
1327 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1328 |
+
(see `past_key_values`).
|
1329 |
+
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1330 |
+
Labels for computing the masked language modeling loss.
|
1331 |
+
return_dict (`bool`, *optional*):
|
1332 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1333 |
+
ext_table_ids (`torch.Tensor`, *optional*):
|
1334 |
+
ext_table ids for embedding projection.
|
1335 |
+
ext_table_sub (`torch.Tensor`, *optional*):
|
1336 |
+
ext_table subscriptions for embedding projection.
|
1337 |
+
"""
|
1338 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1339 |
+
|
1340 |
+
model_output = self.cpmbee(
|
1341 |
+
input_ids,
|
1342 |
+
input_id_sub,
|
1343 |
+
length,
|
1344 |
+
context,
|
1345 |
+
sample_ids,
|
1346 |
+
num_segments,
|
1347 |
+
segment,
|
1348 |
+
segment_rel_offset,
|
1349 |
+
segment_rel,
|
1350 |
+
span,
|
1351 |
+
output_attentions,
|
1352 |
+
output_hidden_states,
|
1353 |
+
past_key_values,
|
1354 |
+
use_cache,
|
1355 |
+
return_dict,
|
1356 |
+
)
|
1357 |
+
hidden_states = model_output.last_hidden_state if return_dict else model_output[0]
|
1358 |
+
|
1359 |
+
if ext_table_ids is not None:
|
1360 |
+
ext_table = self.cpmbee.input_embedding(ext_table_ids, ext_table_sub)
|
1361 |
+
else:
|
1362 |
+
ext_table = None
|
1363 |
+
logits = self.cpmbee.input_embedding.projection(hidden_states, ext_table)
|
1364 |
+
|
1365 |
+
loss = None
|
1366 |
+
if labels is not None:
|
1367 |
+
loss_func = nn.CrossEntropyLoss()
|
1368 |
+
loss = loss_func(logits.view(-1, logits.size(-1)), labels.long().view(-1))
|
1369 |
+
|
1370 |
+
if not return_dict:
|
1371 |
+
output = (logits,) + model_output[1:]
|
1372 |
+
return ((loss,) + output) if loss is not None else output
|
1373 |
+
|
1374 |
+
return CausalLMOutputWithPast(
|
1375 |
+
loss=loss,
|
1376 |
+
logits=logits,
|
1377 |
+
past_key_values=model_output.past_key_values,
|
1378 |
+
hidden_states=model_output.hidden_states,
|
1379 |
+
attentions=model_output.attentions,
|
1380 |
+
)
|
1381 |
+
|
1382 |
+
def inference(
|
1383 |
self,
|
1384 |
input_ids: Optional[torch.Tensor] = None,
|
1385 |
input_id_sub: Optional[torch.Tensor] = None,
|
|
|
1474 |
"""
|
1475 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1476 |
|
1477 |
+
model_output = self.cpmbee.inference(
|
1478 |
input_ids,
|
1479 |
input_id_sub,
|
1480 |
position,
|
|
|
1773 |
# init inference
|
1774 |
model_inputs, input_ids = self.prepare_inputs_for_generation(input_ids, batch_size, **model_kwargs)
|
1775 |
pred_start_index = input_ids.size(-1)
|
1776 |
+
outputs = self.inference(
|
1777 |
**model_inputs,
|
1778 |
return_dict=True,
|
1779 |
output_attentions=output_attentions,
|
|
|
1818 |
input_ids, batch_size, beam_scorer, **model_kwargs
|
1819 |
)
|
1820 |
|
1821 |
+
outputs = self.inference(
|
1822 |
**model_inputs,
|
1823 |
return_dict=True,
|
1824 |
output_attentions=output_attentions,
|