File size: 6,870 Bytes
98441e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch CpmBee model. """


import unittest

from transformers.testing_utils import is_torch_available, require_torch, tooslow

from ...generation.test_utils import torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import (
        CpmBeeConfig,
        CpmBeeForCausalLM,
        CpmBeeModel,
        CpmBeeTokenizer,
    )


@require_torch
class CpmBeeModelTester:
    def __init__(
        self,
        parent,
        batch_size=2,
        seq_length=8,
        is_training=True,
        use_token_type_ids=False,
        use_input_mask=False,
        use_labels=False,
        use_mc_token_ids=False,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=3,
        num_attention_heads=4,
        intermediate_size=37,
        num_buckets=32,
        max_distance=128,
        position_bias_num_segment_buckets=32,
        init_std=1.0,
        return_dict=True,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_token_type_ids = use_token_type_ids
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.use_mc_token_ids = use_mc_token_ids
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.num_buckets = num_buckets
        self.max_distance = max_distance
        self.position_bias_num_segment_buckets = position_bias_num_segment_buckets
        self.init_std = init_std
        self.return_dict = return_dict

    def prepare_config_and_inputs(self):
        input_ids = {}
        input_ids["input_ids"] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).type(torch.int32)
        input_ids["use_cache"] = False

        config = self.get_config()

        return (config, input_ids)

    def get_config(self):
        return CpmBeeConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            dim_ff=self.intermediate_size,
            position_bias_num_buckets=self.num_buckets,
            position_bias_max_distance=self.max_distance,
            position_bias_num_segment_buckets=self.position_bias_num_segment_buckets,
            use_cache=True,
            init_std=self.init_std,
            return_dict=self.return_dict,
        )

    def create_and_check_cpmbee_model(self, config, input_ids, *args):
        model = CpmBeeModel(config=config)
        model.to(torch_device)
        model.eval()

        hidden_states = model(**input_ids).last_hidden_state

        self.parent.assertEqual(hidden_states.shape, (self.batch_size, self.seq_length, config.hidden_size))

    def create_and_check_lm_head_model(self, config, input_ids, *args):
        model = CpmBeeForCausalLM(config)
        model.to(torch_device)
        input_ids["input_ids"] = input_ids["input_ids"].to(torch_device)
        model.eval()

        model_output = model(**input_ids)
        self.parent.assertEqual(
            model_output.logits.shape,
            (self.batch_size, self.seq_length, config.vocab_size),
        )

    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict


@require_torch
class CpmBeeModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (CpmBeeModel, CpmBeeForCausalLM) if is_torch_available() else ()
    pipeline_model_mapping = (
        {"feature-extraction": CpmBeeModel, "text-generation": CpmBeeForCausalLM} if is_torch_available() else {}
    )

    test_pruning = False
    test_missing_keys = False
    test_mismatched_shapes = False
    test_head_masking = False
    test_resize_embeddings = False

    def setUp(self):
        self.model_tester = CpmBeeModelTester(self)
        self.config_tester = ConfigTester(self, config_class=CpmBeeConfig)

    def test_config(self):
        self.config_tester.create_and_test_config_common_properties()
        self.config_tester.create_and_test_config_to_json_string()
        self.config_tester.create_and_test_config_to_json_file()
        self.config_tester.create_and_test_config_from_and_save_pretrained()
        self.config_tester.check_config_can_be_init_without_params()
        self.config_tester.check_config_arguments_init()

    def test_inputs_embeds(self):
        unittest.skip("CPMBee doesn't support input_embeds.")(self.test_inputs_embeds)

    def test_retain_grad_hidden_states_attentions(self):
        unittest.skip(
            "CPMBee doesn't support retain grad in hidden_states or attentions, because prompt management will peel off the output.hidden_states from graph.\
                 So is attentions. We strongly recommand you use loss to tune model."
        )(self.test_retain_grad_hidden_states_attentions)

    def test_cpmbee_model(self):
        config, inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_cpmbee_model(config, inputs)

    def test_cpmbee_lm_head_model(self):
        config, inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(config, inputs)


@require_torch
class CpmBeeForCausalLMlIntegrationTest(unittest.TestCase):
    @tooslow
    def test_simple_generation(self):
        texts = {"input": "今天天气不错,", "<ans>": ""}
        model = CpmBeeForCausalLM.from_pretrained("openbmb/cpm-bee-10b")
        tokenizer = CpmBeeTokenizer.from_pretrained("openbmb/cpm-bee-10b")
        output_texts = model.generate(texts, tokenizer)
        expected_output = {"input": "今天天气不错,", "<ans>": "适合睡觉。"}
        self.assertEqual(expected_output["<ans>"], output_texts["<ans>"])