File size: 2,420 Bytes
5db8f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from transformers import PretrainedConfig


class QWenConfig(PretrainedConfig):
    model_type = "qwen"
    keys_to_ignore_at_inference = ["past_key_values"]
    attribute_map = {
        "hidden_size": "n_embd",
        "num_attention_heads": "n_head",
        "max_position_embeddings": "n_positions",
        "num_hidden_layers": "n_layer",
    }

    def __init__(
        self,
        vocab_size=151851,
        n_embd=4096,
        n_layer=32,
        n_head=32,
        n_inner=None,
        embd_pdrop=0.0,
        attn_pdrop=0.0,
        layer_norm_epsilon=1e-5,
        initializer_range=0.02,
        scale_attn_weights=True,
        use_cache=True,
        eos_token_id=151643,
        apply_residual_connection_post_layernorm=False,
        bf16=False,
        fp16=False,
        fp32=False,
        kv_channels=128,
        rotary_pct=1.0,
        rotary_emb_base=10000,
        use_dynamic_ntk=False,
        use_logn_attn=False,
        use_flash_attn=True,
        ffn_hidden_size=22016,
        no_bias=True,
        tie_word_embeddings=False,
        **kwargs,
    ):
        self.eos_token_id = eos_token_id
        super().__init__(
            eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
        )

        self.vocab_size = vocab_size
        self.n_embd = n_embd
        self.n_layer = n_layer
        self.n_head = n_head
        self.n_inner = n_inner
        self.embd_pdrop = embd_pdrop
        self.attn_pdrop = attn_pdrop
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_range = initializer_range
        self.scale_attn_weights = scale_attn_weights
        self.use_cache = use_cache
        self.apply_residual_connection_post_layernorm = (
            apply_residual_connection_post_layernorm
        )
        self.bf16 = bf16
        self.fp16 = fp16
        self.fp32 = fp32
        self.kv_channels = kv_channels
        self.rotary_pct = rotary_pct
        self.rotary_emb_base = rotary_emb_base
        self.use_dynamic_ntk = use_dynamic_ntk
        self.use_logn_attn = use_logn_attn
        self.use_flash_attn = use_flash_attn
        self.ffn_hidden_size = ffn_hidden_size
        self.no_bias = no_bias
        self.tie_word_embeddings = tie_word_embeddings