File size: 1,935 Bytes
4bb2bca 1cf1746 4bb2bca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
tags:
- text-to-image
- flux
- lora
- diffusers
- template:sd-lora
- ai-toolkit
widget:
- text: A person in a spanish cafe Jungkook with rainbow hair color, pink suitm
best quality, real photo, 26K
output:
url: samples/1732773611180__000001539_0.jpg
- text: A Jungkook with orange hair color, purple t-shirt and brown jeans, best
quality, real photo, 26K
output:
url: samples/1732773641590__000001539_1.jpg
- text: A person in a korean garden Jungkook with pink hair color, dark grey shirt
and yellow jeans, best quality, real photo, 26K
output:
url: samples/1732773674126__000001539_2.jpg
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: Jungkook
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
# jungkook
<Gallery />
## Trigger words
You should use `Jungkook` to trigger the image generation.
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc.
Weights for this model are available in Safetensors format.
[Download](/openfree/jungkook/tree/main) them in the Files & versions tab.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to('cuda')
pipeline.load_lora_weights('openfree/jungkook', weight_name='jungkook.safetensors')
image = pipeline('A person in a spanish cafe Jungkook with rainbow hair color, pink suitm best quality, real photo, 26K').images[0]
image.save("my_image.png")
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|