File size: 5,002 Bytes
afcb025
 
 
52b5206
 
 
cf597ce
52b5206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12c4100
52b5206
 
12c4100
52b5206
 
 
 
 
 
 
 
 
12c4100
52b5206
12c4100
 
52b5206
12c4100
 
 
 
52b5206
 
 
 
 
 
 
 
 
 
12c4100
52b5206
12c4100
52b5206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
license: apache-2.0
---

# OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA

In this repo, we release a permissively licensed open-source instruction-following model based on [OpenLLaMA](https://github.com/openlm-research/open_llama). In this release, we release a public preview of the 7B OpenAlpaca model based on [the previewed version of OpenLLaMA](https://huggingface.co/openlm-research/open_llama_7b_700bt_preview) that is a 7B model trained with 700 billion tokens. We provide PyTorch weights of OpenAlpaca. Stay tuned for our forthcoming updates!

**[Project Page]** [(https://github.com/yxuansu/OpenAlpaca)](https://github.com/yxuansu/OpenAlpaca)

# Dataset and Training

We train our model on the [dolly 15k dataset](https://huggingface.co/datasets/databricks/databricks-dolly-15k) released by Databricks. The training configurations are provided in the table below. The training takes on 8 x A100(40G) GPUs and lasts for around 30 minutes.

|||
|:-------------:|:-------------:|
|**Batch Size**|64|
|**Learning rate**|2e-5|
|**Epochs**|3|
|**Max length**|1024|



# Example Usage

Below shows an example on how to use OpenAlpaca

```python
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer

# the previewed version of OpenAlpaca
model_path = r'openllmplayground/openalpaca_7b_700bt_preview'
tokenizer = LlamaTokenizer.from_pretrained(model_path)
model = LlamaForCausalLM.from_pretrained(model_path).cuda()
tokenizer.bos_token_id, tokenizer.eos_token_id = 1,2 # see https://github.com/openlm-research/open_llama#preview-weights-release-and-usage

# same prompt as provided in https://crfm.stanford.edu/2023/03/13/alpaca.html
instruction = r'What is an alpaca? How is it different from a llama?'
'''
instruction = r'Write an e-mail to congratulate new Standford admits and mention that you are excited about meeting all of them in person.'
instruction = r'What is the capital of Tanzania?'
instruction = r'Write a well-thought out abstract for a machine learning paper that proves that 42 is the optimal seed for training neural networks.'
'''

prompt_no_input = f'Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:'
tokens = tokenizer.encode(prompt_no_input)

tokens = torch.LongTensor(tokens).unsqueeze(0)
instance = {'input_ids': tokens,
                    'top_k': 50,
                    'top_p': 0.9,
                    'generate_len': 128}
                    
length = len(tokens[0])
with torch.no_grad():
    rest = model.generate(
            input_ids=tokens, 
            max_length=length+instance['generate_len'], 
            use_cache=True, 
            do_sample=True, 
            top_p=instance['top_p'], 
            top_k=instance['top_k']
        )
        
output = rest[0][length:]
string = tokenizer.decode(output, skip_special_tokens=True)
print(f'[!] Generation results: {string}')
```

# License and Usage

OpenAlpaca is permissively licensed under the Apache 2.0 license and can be used freely for academic/commercial purposes.


# Contact
We would love to get feedback from the community. If you have any questions, please open an issue or contact us.

OpenAlpaca is developed by: [Yixuan Su](https://yxuansu.github.io/)<sup>\*</sup>, [Tian Lan](https://github.com/gmftbyGMFTBY)<sup>\*</sup>, and [Deng Cai](https://jcyk.github.io/) (The first two members<sup>\*</sup> contributed equally.)

# Reference:

If you found OpenAlpaca useful in your research or applications, please kindly cite using the following BibTeX:
```
@misc{openalpaca,
  author = {Yixuan Su and Tian Lan and Deng Cai},
  title = {OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}},
}
```
```
@software{openlm2023openllama,
  author = {Xinyang Geng and Hao Liu},
  title = {OpenLLaMA: An Open Reproduction of LLaMA},
  month = May,
  year = 2023,
  url = {https://github.com/openlm-research/open_llama}
}
```
```
@misc{alpaca,
  author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
  title = {Stanford Alpaca: An Instruction-following LLaMA model},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
}
```
```
@article{touvron2023llama,
  title={Llama: Open and efficient foundation language models},
  author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie{-}Anne Lachaux and Timoth{\'{e}}e Lacroix and Baptiste Rozi{\`{e}}re and Naman Goyal and Eric Hambro and Faisal Azhar and Aur{\'{e}}lien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
  journal={arXiv preprint arXiv:2302.13971},
  year={2023}
}
```