ireneisdoomed
commited on
chore: update model
Browse files- README.md +113 -10
- l2g_model_1006.pkl +1 -1
README.md
CHANGED
@@ -1,15 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
# Model description
|
3 |
|
4 |
The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
|
11 |
-
|
12 |
-
|
13 |
|
14 |
## Intended uses & limitations
|
15 |
|
@@ -52,10 +155,10 @@ Gradient Boosting Classifier
|
|
52 |
# How to Get Started with the Model
|
53 |
|
54 |
To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix.
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
|
60 |
# Citation
|
61 |
|
|
|
1 |
+
---
|
2 |
+
library_name: sklearn
|
3 |
+
tags:
|
4 |
+
- sklearn
|
5 |
+
- skops
|
6 |
+
- tabular-classification
|
7 |
+
model_format: pickle
|
8 |
+
model_file: l2g_model_1006.pkl
|
9 |
+
widget:
|
10 |
+
- structuredData:
|
11 |
+
distanceTssMean:
|
12 |
+
- 0.1378757804632187
|
13 |
+
- 0.004574988503009081
|
14 |
+
- 0.01267080195248127
|
15 |
+
distanceTssMinimum:
|
16 |
+
- 0.02554949000477791
|
17 |
+
- 9.566087828716263e-05
|
18 |
+
- 0.00206877407617867
|
19 |
+
eqtlColocClppMaximum:
|
20 |
+
- 0.0
|
21 |
+
- 0.0
|
22 |
+
- 0.0
|
23 |
+
eqtlColocClppMaximumNeighborhood:
|
24 |
+
- 0.0
|
25 |
+
- 0.0
|
26 |
+
- 0.0
|
27 |
+
eqtlColocLlrMaximum:
|
28 |
+
- 0.0
|
29 |
+
- 0.0
|
30 |
+
- 0.0
|
31 |
+
eqtlColocLlrMaximumNeighborhood:
|
32 |
+
- 0.0
|
33 |
+
- 0.0
|
34 |
+
- 0.0
|
35 |
+
pqtlColocClppMaximum:
|
36 |
+
- 0.0
|
37 |
+
- 0.0
|
38 |
+
- 0.0
|
39 |
+
pqtlColocClppMaximumNeighborhood:
|
40 |
+
- 0.0
|
41 |
+
- 0.0
|
42 |
+
- 0.0
|
43 |
+
pqtlColocLlrMaximum:
|
44 |
+
- 0.0
|
45 |
+
- 0.0
|
46 |
+
- 0.0
|
47 |
+
pqtlColocLlrMaximumNeighborhood:
|
48 |
+
- 0.0
|
49 |
+
- 0.0
|
50 |
+
- 0.0
|
51 |
+
sqtlColocClppMaximum:
|
52 |
+
- 0.0
|
53 |
+
- 0.0
|
54 |
+
- 0.0
|
55 |
+
sqtlColocClppMaximumNeighborhood:
|
56 |
+
- 0.0
|
57 |
+
- 0.0
|
58 |
+
- 0.0
|
59 |
+
sqtlColocLlrMaximum:
|
60 |
+
- 0.0
|
61 |
+
- 0.0
|
62 |
+
- 0.0
|
63 |
+
sqtlColocLlrMaximumNeighborhood:
|
64 |
+
- 0.0
|
65 |
+
- 0.0
|
66 |
+
- 0.0
|
67 |
+
studyLocusId:
|
68 |
+
- -6454334657549107000
|
69 |
+
- 6087706114048421000
|
70 |
+
- -744015116205320800
|
71 |
+
tuqtlColocClppMaximum:
|
72 |
+
- 0.0
|
73 |
+
- 0.0
|
74 |
+
- 0.0
|
75 |
+
tuqtlColocClppMaximumNeighborhood:
|
76 |
+
- 0.0
|
77 |
+
- 0.0
|
78 |
+
- 0.0
|
79 |
+
tuqtlColocLlrMaximum:
|
80 |
+
- 0.0
|
81 |
+
- 0.0
|
82 |
+
- 0.0
|
83 |
+
tuqtlColocLlrMaximumNeighborhood:
|
84 |
+
- 0.0
|
85 |
+
- 0.0
|
86 |
+
- 0.0
|
87 |
+
vepMaximum:
|
88 |
+
- 0.0
|
89 |
+
- 0.0
|
90 |
+
- 0.0
|
91 |
+
vepMaximumNeighborhood:
|
92 |
+
- 0.0
|
93 |
+
- 0.0
|
94 |
+
- 0.0
|
95 |
+
vepMean:
|
96 |
+
- 0.0
|
97 |
+
- 0.0
|
98 |
+
- 0.0
|
99 |
+
vepMeanNeighborhood:
|
100 |
+
- 0.0
|
101 |
+
- 0.0
|
102 |
+
- 0.0
|
103 |
+
---
|
104 |
|
105 |
# Model description
|
106 |
|
107 |
The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
|
108 |
|
109 |
+
- Distance: (from credible set variants to gene)
|
110 |
+
- Molecular QTL Colocalization
|
111 |
+
- Chromatin Interaction: (e.g., promoter-capture Hi-C)
|
112 |
+
- Variant Pathogenicity: (from VEP)
|
113 |
|
114 |
+
More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
|
115 |
+
|
116 |
|
117 |
## Intended uses & limitations
|
118 |
|
|
|
155 |
# How to Get Started with the Model
|
156 |
|
157 |
To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix.
|
158 |
+
The model can then be used to make predictions using the `predict` method.
|
159 |
+
|
160 |
+
More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
|
161 |
+
|
162 |
|
163 |
# Citation
|
164 |
|
l2g_model_1006.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2796518
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f4889d855574c1f2db1b64e09a322c8f30374df432b8faa780a98a8bf487158
|
3 |
size 2796518
|