ireneisdoomed commited on
Commit
66fb4bf
·
verified ·
1 Parent(s): 9c77234

chore: update model

Browse files
Files changed (2) hide show
  1. README.md +113 -10
  2. l2g_model_1006.pkl +1 -1
README.md CHANGED
@@ -1,15 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
  # Model description
3
 
4
  The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
5
 
6
- - Distance: (from credible set variants to gene)
7
- - Molecular QTL Colocalization
8
- - Chromatin Interaction: (e.g., promoter-capture Hi-C)
9
- - Variant Pathogenicity: (from VEP)
10
 
11
- More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
12
-
13
 
14
  ## Intended uses & limitations
15
 
@@ -52,10 +155,10 @@ Gradient Boosting Classifier
52
  # How to Get Started with the Model
53
 
54
  To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix.
55
- The model can then be used to make predictions using the `predict` method.
56
-
57
- More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
58
-
59
 
60
  # Citation
61
 
 
1
+ ---
2
+ library_name: sklearn
3
+ tags:
4
+ - sklearn
5
+ - skops
6
+ - tabular-classification
7
+ model_format: pickle
8
+ model_file: l2g_model_1006.pkl
9
+ widget:
10
+ - structuredData:
11
+ distanceTssMean:
12
+ - 0.1378757804632187
13
+ - 0.004574988503009081
14
+ - 0.01267080195248127
15
+ distanceTssMinimum:
16
+ - 0.02554949000477791
17
+ - 9.566087828716263e-05
18
+ - 0.00206877407617867
19
+ eqtlColocClppMaximum:
20
+ - 0.0
21
+ - 0.0
22
+ - 0.0
23
+ eqtlColocClppMaximumNeighborhood:
24
+ - 0.0
25
+ - 0.0
26
+ - 0.0
27
+ eqtlColocLlrMaximum:
28
+ - 0.0
29
+ - 0.0
30
+ - 0.0
31
+ eqtlColocLlrMaximumNeighborhood:
32
+ - 0.0
33
+ - 0.0
34
+ - 0.0
35
+ pqtlColocClppMaximum:
36
+ - 0.0
37
+ - 0.0
38
+ - 0.0
39
+ pqtlColocClppMaximumNeighborhood:
40
+ - 0.0
41
+ - 0.0
42
+ - 0.0
43
+ pqtlColocLlrMaximum:
44
+ - 0.0
45
+ - 0.0
46
+ - 0.0
47
+ pqtlColocLlrMaximumNeighborhood:
48
+ - 0.0
49
+ - 0.0
50
+ - 0.0
51
+ sqtlColocClppMaximum:
52
+ - 0.0
53
+ - 0.0
54
+ - 0.0
55
+ sqtlColocClppMaximumNeighborhood:
56
+ - 0.0
57
+ - 0.0
58
+ - 0.0
59
+ sqtlColocLlrMaximum:
60
+ - 0.0
61
+ - 0.0
62
+ - 0.0
63
+ sqtlColocLlrMaximumNeighborhood:
64
+ - 0.0
65
+ - 0.0
66
+ - 0.0
67
+ studyLocusId:
68
+ - -6454334657549107000
69
+ - 6087706114048421000
70
+ - -744015116205320800
71
+ tuqtlColocClppMaximum:
72
+ - 0.0
73
+ - 0.0
74
+ - 0.0
75
+ tuqtlColocClppMaximumNeighborhood:
76
+ - 0.0
77
+ - 0.0
78
+ - 0.0
79
+ tuqtlColocLlrMaximum:
80
+ - 0.0
81
+ - 0.0
82
+ - 0.0
83
+ tuqtlColocLlrMaximumNeighborhood:
84
+ - 0.0
85
+ - 0.0
86
+ - 0.0
87
+ vepMaximum:
88
+ - 0.0
89
+ - 0.0
90
+ - 0.0
91
+ vepMaximumNeighborhood:
92
+ - 0.0
93
+ - 0.0
94
+ - 0.0
95
+ vepMean:
96
+ - 0.0
97
+ - 0.0
98
+ - 0.0
99
+ vepMeanNeighborhood:
100
+ - 0.0
101
+ - 0.0
102
+ - 0.0
103
+ ---
104
 
105
  # Model description
106
 
107
  The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
108
 
109
+ - Distance: (from credible set variants to gene)
110
+ - Molecular QTL Colocalization
111
+ - Chromatin Interaction: (e.g., promoter-capture Hi-C)
112
+ - Variant Pathogenicity: (from VEP)
113
 
114
+ More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
115
+
116
 
117
  ## Intended uses & limitations
118
 
 
155
  # How to Get Started with the Model
156
 
157
  To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix.
158
+ The model can then be used to make predictions using the `predict` method.
159
+
160
+ More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
161
+
162
 
163
  # Citation
164
 
l2g_model_1006.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a65983524c94451d60bb1649b6f7626bf764dccdc471c7934650ee281ec253fa
3
  size 2796518
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f4889d855574c1f2db1b64e09a322c8f30374df432b8faa780a98a8bf487158
3
  size 2796518