Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: qwen
|
4 |
+
language:
|
5 |
+
- th
|
6 |
+
- en
|
7 |
+
library_name: transformers
|
8 |
+
pipeline_tag: text-generation
|
9 |
+
tags:
|
10 |
+
- openthaigpt
|
11 |
+
- qwen
|
12 |
+
---
|
13 |
+
|
14 |
+
# 🇹🇭 OpenThaiGPT 7b 1.5.0 Chat
|
15 |
+
![OpenThaiGPT](https://1173516064-files.gitbook.io/~/files/v0/b/gitbook-x-prod.appspot.com/o/spaces%2FvvbWvIIe82Iv1yHaDBC5%2Fuploads%2Fb8eiMDaqiEQL6ahbAY0h%2Fimage.png?alt=media&token=6fce78fd-2cca-4c0a-9648-bd5518e644ce)
|
16 |
+
[More Info](https://openthaigpt.aieat.or.th/)
|
17 |
+
|
18 |
+
🇹🇭 **OpenThaiGPT 7b Version 1.5.0** is an advanced 7-billion-parameter Thai language chat model based on Qwen v2.5 released on September 30, 2024. It has been specifically fine-tuned on over 2,000,000 Thai instruction pairs and is capable of answering Thai-specific domain questions.
|
19 |
+
|
20 |
+
## Highlights
|
21 |
+
- **State-of-the-art Thai language LLM**, achieving the highest average scores across various Thai language exams compared to other open-source Thai LLMs.
|
22 |
+
- **Multi-turn conversation support** for extended dialogues.
|
23 |
+
- **Retrieval Augmented Generation (RAG) compatibility** for enhanced response generation.
|
24 |
+
- **Impressive context handling**: Processes up to 131,072 tokens of input and generates up to 8,192 tokens, enabling detailed and complex interactions.
|
25 |
+
|
26 |
+
## Benchmark on [OpenThaiGPT Eval](https://huggingface.co/datasets/openthaigpt/openthaigpt_eval)
|
27 |
+
** Please take a look at ``openthaigpt/openthaigpt1.5-7b-instruct`` for this model's evaluation result.
|
28 |
+
| **Exam names** | **scb10x/llama-3-typhoon-v1.5x-70b-instruct** | **meta-llama/Llama-3.1-70B-Instruct** | **Qwen/Qwen2.5-72B-Instruct** | **openthaigpt/openthaigpt1.5-72b-instruct** |
|
29 |
+
|:------------------------------:|:---------------------------------------------:|:-------------------------------------:|:-----------------------------:|:----------------------------------:|
|
30 |
+
| **01_a_level** | 59.17% | 61.67% | 75.00% | 76.67% |
|
31 |
+
| **02_tgat** | 46.00% | 40.00% | 48.00% | 46.00% |
|
32 |
+
| **03_tpat1** | 52.50% | 50.00% | 55.00% | 55.00% |
|
33 |
+
| **04_investment_consult** | 60.00% | 52.00% | 80.00% | 72.00% |
|
34 |
+
| **05_facebook_beleble_th_200** | 87.50% | 88.00% | 90.00% | 90.00% |
|
35 |
+
| **06_xcopa_th_200** | 84.50% | 85.50% | 90.00% | 90.50% |
|
36 |
+
| **07_xnli2.0_th_200** | 62.50% | 63.00% | 65.50% | 70.50% |
|
37 |
+
| **08_onet_m3_thai** | 76.00% | 56.00% | 76.00% | 84.00% |
|
38 |
+
| **09_onet_m3_social** | 95.00% | 95.00% | 90.00% | 95.00% |
|
39 |
+
| **10_onet_m3_math** | 43.75% | 25.00% | 37.50% | 37.50% |
|
40 |
+
| **11_onet_m3_science** | 53.85% | 61.54% | 65.38% | 73.08% |
|
41 |
+
| **12_onet_m3_english** | 93.33% | 93.33% | 96.67% | 96.67% |
|
42 |
+
| **13_onet_m6_thai** | 55.38% | 60.00% | 60.00% | 56.92% |
|
43 |
+
| **14_onet_m6_math** | 41.18% | 58.82% | 23.53% | 41.18% |
|
44 |
+
| **15_onet_m6_social** | 67.27% | 76.36% | 63.64% | 65.45% |
|
45 |
+
| **16_onet_m6_science** | 50.00% | 57.14% | 64.29% | 67.86% |
|
46 |
+
| **17_onet_m6_english** | 73.08% | 82.69% | 86.54% | 90.38% |
|
47 |
+
| **Micro Average** | 69.97% | 71.09% | 75.02% | <b style="color:blue">76.73%</b> |
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
Thai language multiple choice exams, Test on unseen test set, Zero-shot learning. Benchmark source code and exams information: https://github.com/OpenThaiGPT/openthaigpt_eval
|
53 |
+
|
54 |
+
(Updated on: 30 September 2024)
|
55 |
+
|
56 |
+
## Benchmark on [scb10x/thai_exam](https://huggingface.co/datasets/scb10x/thai_exam)
|
57 |
+
|
58 |
+
| Models | **Thai Exam (Acc)** |
|
59 |
+
|:----------------------------------------------------------:|:-------------------:|
|
60 |
+
| **api/claude-3-5-sonnet-20240620** | 69.2 |
|
61 |
+
| <b style="color:blue">**openthaigpt/openthaigpt1.5-72b-instruct***</b> | <b style="color:blue">64.07</b> |
|
62 |
+
| **api/gpt-4o-2024-05-13** | 63.89 |
|
63 |
+
| **hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4** | 63.54 |
|
64 |
+
| **Qwen/Qwen2-72B-Instruct** | 58.23 |
|
65 |
+
| **meta-llama/Meta-Llama-3.1-70B-Instruct** | 58.23 |
|
66 |
+
| **scb10x/llama-3-typhoon-v1.5x-70b-instruct** | 58.76 |
|
67 |
+
| **Qwen/Qwen2.5-14B-Instruct** | 57.35 |
|
68 |
+
| **api/gpt-4o-mini-2024-07-18** | 54.51 |
|
69 |
+
| <b style="color:blue">**openthaigpt/openthaigpt1.5-7b-instruct***</b> | <b style="color:blue">52.04</b> |
|
70 |
+
| **SeaLLMs/SeaLLMs-v3-7B-Chat** | 51.33 |
|
71 |
+
| **openthaigpt/openthaigpt-1.0.0-70b-chat** | 50.09 |
|
72 |
+
\* Evaluated by OpenThaiGPT team using SCBx's Thai Exam
|
73 |
+
|
74 |
+
## Licenses
|
75 |
+
* Built with Qwen
|
76 |
+
* Qwen License: Allow **Research** and
|
77 |
+
**Commercial uses** but if your user base exceeds 100 million monthly active users, you need to negotiate a separate commercial license. Please see LICENSE file for more information.<br>
|
78 |
+
|
79 |
+
## Sponsors
|
80 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/5fcd9c426d942eaf4d1ebd30/3kjN6kuTzXDXQ6o1RFvHX.png" width="600px">
|
81 |
+
|
82 |
+
## Supports
|
83 |
+
- Official website: https://openthaigpt.aieat.or.th
|
84 |
+
- Facebook page: https://web.facebook.com/groups/openthaigpt
|
85 |
+
- A Discord server for discussion and support [here](https://discord.gg/rUTp6dfVUF)
|
86 |
+
- E-mail: kobkrit@aieat.or.th
|
87 |
+
|
88 |
+
## Prompt Format
|
89 |
+
Prompt format is based on Llama2 with a small modification (Adding "###" to specify the context part)
|
90 |
+
```
|
91 |
+
<|im_start|>system\n{sytem_prompt}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n
|
92 |
+
```
|
93 |
+
|
94 |
+
### System prompt:
|
95 |
+
```
|
96 |
+
คุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์
|
97 |
+
```
|
98 |
+
|
99 |
+
### Examples
|
100 |
+
|
101 |
+
#### Single Turn Conversation Example
|
102 |
+
```
|
103 |
+
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\n
|
104 |
+
```
|
105 |
+
|
106 |
+
#### Single Turn Conversation with Context (RAG) Example
|
107 |
+
```
|
108 |
+
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nกรุงเทพมหานคร เป็นเมืองหลวง นครและมหานครที่มีประชากรมากที่สุดของประเทศไทย กรุงเทพมหานครมีพื้นที่ทั้งหมด 1,568.737 ตร.กม. มีประชากรตามทะเบียนราษฎรกว่า 8 ล้านคน\nกรุงเทพมหานครมีพื้นที่เท่าไร่<|im_end|>\n<|im_start|>assistant\n
|
109 |
+
```
|
110 |
+
|
111 |
+
#### Multi Turn Conversation Example
|
112 |
+
|
113 |
+
##### First turn
|
114 |
+
```
|
115 |
+
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\n
|
116 |
+
```
|
117 |
+
|
118 |
+
##### Second turn
|
119 |
+
```
|
120 |
+
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\nสวัสดีครับ ยินดีต้อนรับครับ คุณต้องการให้ฉันช่วยอะไรครับ?<|im_end|>\n<|im_start|>user\nกรุงเทพมหานคร ชื่อเต็มยาวๆคืออะไร<|im_end|>\n<|im_start|>assistant\n
|
121 |
+
```
|
122 |
+
|
123 |
+
ชื่อเต็มของกรุงเทพมหานครคือ \"กรุงเทพมหานคร อมรรัตนโกสินทร์ มหินทรายุธยา มหาดิลกภพ นพรัตนราชธานีบูรีรมย์ อุดมราชนิเวศน์มหาสถาน อมรพิมานอวตารสถิต สักกะทัตติยวิษณุกรรมประสิทธิ์\"
|
124 |
+
|
125 |
+
##### Result
|
126 |
+
```
|
127 |
+
<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\nสวัสดีครับ ยินดีต้อนรับครับ คุณต้องการให้ฉันช่วยอะไรครับ?<|im_end|>\n<|im_start|>user\nกรุงเทพมหานคร ชื่อเต็มยาวๆคืออะไร<|im_end|>\n<|im_start|>assistant\nชื่อเต็มของกรุงเทพมหานครคือ \"กรุงเทพมหานคร อมรรัตนโกสินทร์ มหินทรายุธยา มหาดิลกภพ นพรัตนราชธานีบูรีรมย์ อุดมราชนิเวศน์มหาสถาน อมรพิมานอวตารสถิต สักกะทัตติยวิษณุกรรมประสิทธิ์\"
|
128 |
+
```
|
129 |
+
|
130 |
+
## How to use
|
131 |
+
|
132 |
+
### Huggingface
|
133 |
+
```python
|
134 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
135 |
+
|
136 |
+
model_name = "openthaigpt/openthaigpt1.5-72b-instruct"
|
137 |
+
|
138 |
+
model = AutoModelForCausalLM.from_pretrained(
|
139 |
+
model_name,
|
140 |
+
torch_dtype="auto",
|
141 |
+
device_map="auto"
|
142 |
+
)
|
143 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
144 |
+
|
145 |
+
prompt = "ประเทศไทยคืออะไร"
|
146 |
+
messages = [
|
147 |
+
{"role": "system", "content": "คุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์"},
|
148 |
+
{"role": "user", "content": prompt}
|
149 |
+
]
|
150 |
+
text = tokenizer.apply_chat_template(
|
151 |
+
messages,
|
152 |
+
tokenize=False,
|
153 |
+
add_generation_prompt=True
|
154 |
+
)
|
155 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
156 |
+
|
157 |
+
generated_ids = model.generate(
|
158 |
+
**model_inputs,
|
159 |
+
max_new_tokens=512
|
160 |
+
)
|
161 |
+
generated_ids = [
|
162 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
163 |
+
]
|
164 |
+
|
165 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
166 |
+
```
|
167 |
+
|
168 |
+
### vLLM
|
169 |
+
|
170 |
+
1. Install VLLM (https://github.com/vllm-project/vllm)
|
171 |
+
|
172 |
+
2. Run server
|
173 |
+
```bash
|
174 |
+
vllm serve openthaigpt/openthaigpt1.5-72b-instruct --tensor-parallel-size 4
|
175 |
+
```
|
176 |
+
3. Run inference (CURL example)
|
177 |
+
```bash
|
178 |
+
curl -X POST 'http://127.0.0.1:8000/v1/completions' \
|
179 |
+
-H 'Content-Type: application/json' \
|
180 |
+
-d '{
|
181 |
+
"model": ".",
|
182 |
+
"prompt": "<|im_start|>system\nคุณคือผู้ช่วยตอบคำถามที่ฉลาดและซื่อสัตย์<|im_end|>\n<|im_start|>user\nสวัสดีครับ<|im_end|>\n<|im_start|>assistant\n",
|
183 |
+
"max_tokens": 512,
|
184 |
+
"temperature": 0.7,
|
185 |
+
"top_p": 0.8,
|
186 |
+
"top_k": 40,
|
187 |
+
"stop": ["<|im_end|>"]
|
188 |
+
}'
|
189 |
+
```
|
190 |
+
|
191 |
+
### Processing Long Texts
|
192 |
+
The current `config.json` is set for context length up to 32,768 tokens.
|
193 |
+
To handle extensive inputs exceeding 32,768 tokens, we utilize [YaRN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
|
194 |
+
|
195 |
+
For supported frameworks, you could add the following to `config.json` to enable YaRN:
|
196 |
+
```json
|
197 |
+
{
|
198 |
+
...
|
199 |
+
"rope_scaling": {
|
200 |
+
"factor": 4.0,
|
201 |
+
"original_max_position_embeddings": 32768,
|
202 |
+
"type": "yarn"
|
203 |
+
}
|
204 |
+
}
|
205 |
+
```
|
206 |
+
|
207 |
+
### GPU Memory Requirements
|
208 |
+
| **Number of Parameters** | **FP 16 bits** | **8 bits (Quantized)** | **4 bits (Quantized)** | **Example Graphic Card for 4 bits** |
|
209 |
+
|------------------|----------------|------------------------|------------------------|---------------------------------------------|
|
210 |
+
| **7b** | 24 GB | 12 GB | 6 GB | Nvidia RTX 4060 8GB |
|
211 |
+
| **13b** | 48 GB | 24 GB | 12 GB | Nvidia RTX 4070 16GB |
|
212 |
+
| **72b** | 192 GB | 96 GB | 48 GB | Nvidia RTX 4090 24GB x 2 cards |
|
213 |
+
|
214 |
+
### Authors
|
215 |
+
* Sumeth Yuenyong (sumeth.yue@mahidol.edu)
|
216 |
+
* Kobkrit Viriyayudhakorn (kobkrit@aieat.or.th)
|
217 |
+
* Apivadee Piyatumrong (apivadee.piy@nectec.or.th)
|
218 |
+
* Jillaphat Jaroenkantasima (autsadang41@gmail.com)
|
219 |
+
* Thaweewat Rugsujarit (thaweewr@scg.com)
|
220 |
+
* Norapat Buppodom (new@norapat.com)
|
221 |
+
* Koravich Sangkaew (kwankoravich@gmail.com)
|
222 |
+
* Peerawat Rojratchadakorn (peerawat.roj@gmail.com)
|
223 |
+
* Surapon Nonesung (nonesungsurapon@gmail.com)
|
224 |
+
* Chanon Utupon (chanon.utupon@gmail.com)
|
225 |
+
* Sadhis Wongprayoon (sadhis.tae@gmail.com)
|
226 |
+
* Nucharee Thongthungwong (nuchhub@hotmail.com)
|
227 |
+
* Chawakorn Phiantham (mondcha1507@gmail.com)
|
228 |
+
* Patteera Triamamornwooth (patt.patteera@gmail.com)
|
229 |
+
* Nattarika Juntarapaoraya (natt.juntara@gmail.com)
|
230 |
+
* Kriangkrai Saetan (kraitan.ss21@gmail.com)
|
231 |
+
* Pitikorn Khlaisamniang (pitikorn32@gmail.com)
|
232 |
+
|
233 |
+
<i>Disclaimer: Provided responses are not guaranteed.</i>
|