|
from typing import Any, Dict, List |
|
|
|
from haystack.schema import Document |
|
from fastrag.retrievers import QuantizedBiEncoderRetriever |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
model_id = "Intel/bge-small-en-v1.5-rag-int8-static" |
|
self.retriever = QuantizedBiEncoderRetriever(embedding_model=model_id) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
queries = data.get("queries", None) |
|
documents = data.get("documents", None) |
|
|
|
if queries is not None: |
|
assert isinstance(queries, list), "Expected queries to be a list" |
|
assert all( |
|
isinstance(query, str) for query in queries |
|
), "Expected each query in queries to be a string" |
|
|
|
return self.retriever.embed_queries(queries=queries) |
|
elif documents is not None: |
|
assert isinstance(documents, list), "Expected documents to be a list" |
|
assert all( |
|
isinstance(document, dict) for document in documents |
|
), "Expected each document in documents to be a dictionary" |
|
|
|
documents = [Document.from_dict(document) for document in documents] |
|
return self.retriever.embed_documents(documents=documents) |
|
else: |
|
raise ValueError("Expected either queries or documents") |
|
|