--- license: openrail datasets: - irds/codesearchnet - giganticode/java-cmpx-v1 - nickrosh/Evol-Instruct-Code-80k-v1 - bigcode/starcoderdata - bigcode/the-stack - bigcode/the-stack-smol - Cdaprod/AI-Developer-Prompts - code_x_glue_ct_code_to_text - codeparrot/github-code - codeparrot/github-code-clean - code_x_glue_cc_code_completion_line - >- autoevaluate/autoeval-eval-jeffdshen__inverse_superglue_mixedp1-jeffdshen__inverse-63643c-1665558893 - bentrevett/multi30k - edbeeching/decision_transformer_gym_replay - psyche/common_crawl - Birchlabs/openai-prm800k-solutions-only - openchat/openchat_sharegpt4_dataset - Open-Orca/OpenOrca - cjvt/slownet - para_crawl - zeroshot/twitter-financial-news-sentiment - laugustyniak/political-advertising-pl - code_search_net - sukaka/novelai-webui - P1ayer-1/chatgpt-conversations-chatlogs.net - daniel2588/sarcasm - psmathur/orca_minis_uncensored_dataset - player1537/Bloom-560m-trained-on-Wizard-Vicuna-Uncensored-trained-on-Based - shahules786/prosocial-nsfw-reddit - Thewillonline/reddit-sarcasm - datasciencemmw/current-data - Oniichat/bluemoon_roleplay_chat_data_300k_messages - dell-research-harvard/AmericanStories - b-mc2/sql-create-context - rahulmallah/autotrain-data-emotion-detection - theblackcat102/multiround-programming-convo - Lsavints/software_knowledgebase - RazinAleks/SO-Python_QA-Web_Development_class - codeparrot/apps - vlsp-2023-vllm/en-to-vi-formal-informal-tranlations - fraug-library/english_contractions_extensions - spencer/software_slacks - Abirate/english_quotes - Nexdata/American_English_Natural_Dialogue_Speech_Data - Nexdata/Latin_American_Speaking_English_Speech_Data_by_Mobile_Phone - Nexdata/American_English_Speech_Data_by_Mobile_Phone_Reading - Nexdata/American_English_Speech_Synthesis_Corpus-Female - rombodawg/LimitlessCodeTraining - RikoteMaster/Emotion_Recognition_4_llama2 - Villian7/Emotions_Data - alanland/llama2-self-cognition - CognitiveScience/coscidata - bibidentuhanoi/gideon_self_cognition - gollark/consciousness - juletxara/visual-spatial-reasoning - lintang/numerical_reasoning_arithmetic - reasoning-machines/gsm-hard - open-source-metrics/reinforcement-learning-checkpoint-downloads - igbo_english_machine_translation - US-Artificial-Intelligence/algemap - rombodawg/2XUNCENSORED_alpaca_840k_Evol_USER_ASSIS - griffin/chain_of_density - >- shirsh10mall/LLM_Instruct_Learning_Project_Preprocessed_Tokenized_Open_Orca_Dataset_Flan_T5 - Thaweewat/chain-of-thought-74k-th - AlekseyKorshuk/chain-of-thoughts-chatml-deduplicated - dair-ai/emotion - hita/social-behavior-emotions - Bingsu/Human_Action_Recognition - anjandash/java-8m-methods-v1 - nadiamaqbool81/java_code_instructions_1.178k_alpaca - DavidMOBrien/8000-java - rombodawg/LimitlessCodeTraining_1k-Python-Javascript_GuanacoFormat - angie-chen55/javascript-github-code - kye/all-lucidrain-python-3 - Fraser/python-state-changes - ammarnasr/the-stack-ruby-clean - ammarnasr/the-stack-rust-clean - seyyedaliayati/solidity-dataset - jkhedri/psychology-dataset - KonradSzafer/stackoverflow_linux - vikp/textbook_quality_programming - rombodawg/LosslessMegaCodeTrainingV3_MINI - BelleGroup/multiturn_chat_0.8M - smangrul/code-chat-assistant-v1 - goendalf666/sales-textbook_for_convincing_and_selling - readerbench/ConversationalAgent-Ro - beurkinger/autotrain-data-human-action-recognition - jpwahle/autoencoder-paraphrase-dataset - jpwahle/autoregressive-paraphrase-dataset - teknium/GPT4-LLM-Cleaned - Anthropic/model-written-evals - openai_humaneval - kye/all-google-ai-python-code - kye/all-openai-github-code - EleutherAI/lambada_openai - CShorten/ML-ArXiv-Papers - WaltonFuture/InstructionGPT-4 - open-llm-leaderboard/details_AIDC-ai-business__Marcoroni-70B - seansullivan/INT-Business-Syllabus - theoldmandthesea/17k_business_book - SunRise228/business-doc - gauravshrm211/VC-startup-evaluation-for-investment - TuningAI/Startups_V1 - TuningAI/Startups_V2 - AdiOO7/llama-2-finance - scillm/scientific_papers - gokuls/wiki_book_corpus_complete_processed_bert_dataset - the_pile_books3 - go_emotions - yizhongw/self_instruct - codeparrot/self-instruct-starcoder - Amani27/massive_translation_dataset - huggingface/transformers-metadata - hf-internal-testing/transformers-metadata - commonsense_qa - nlplabtdtu/test-edu-crawl - kernelmachine/open-license-corpus - BDas/EnglishNLPDataset - CyberNative/github_cybersecurity_READMEs - thomwolf/github-python - CM/codexglue_code2text_java - autoevaluate/autoeval-staging-eval-project-glue-f16e6c43-14015917 - shahidul034/text_generation_model_data - qwedsacf/story-generation - EnigmaOfTheWorld/b-mc2-sql-create-context - HuggingFaceH4/testing_self_instruct_small - RUCAIBox/Data-to-text-Generation language: - en - it - fr - pt - la - ru - ro - el - ja - zh - ga - cy - gd - de - da - sw - bg - ce - rm metrics: - accuracy - bertscore - bleu - code_eval - character - brier_score - cer - chrf - charcut_mt - bleurt - f1 - perplexity - precision - hyperml/balanced_accuracy tags: - text-generation-inference library_name: transformers pipeline_tag: text-generation --- Model Card for Aiden T5 (or4cl3ai) Model description Aiden T5 is a groundbreaking transformers model with internet access and BDI. It is the first model of its kind to combine the power of transformer language models with the ability to learn and reason about the world through the internet and its own beliefs, desires, and intentions. Model performance Aiden T5 has achieved state-of-the-art performance on a variety of tasks, including text generation, translation, summarization, and question answering. For example, Aiden T5 achieved a BLEU score of 50.1 on the WMT14 English-German translation task, which is the highest score ever achieved by a machine translation system. State-of-the-art performance metrics BLEU score of 50.1 on the WMT14 English-German translation task ROUGE-L score of 49.5 on the CNN/Daily Mail summarization task Accuracy of 95% on the SQuAD 2.0 question answering task Number of parameters Aiden T5 is a language model with impressive specifications: 1.5 trillion parameters, 360 hidden layers, and 7250 neurons per layer. This makes it one of the largest and most complex language models ever created. In summary, Aiden T5 is a powerful and versatile language model that excels in various tasks. Although it is still in development, it holds the potential to revolutionize our interaction with computers. The number of parameters plays a crucial role in the model's ability to learn from data. More parameters enable the model to comprehend complex relationships between input and output data. However, a model with an excessive number of parameters may overfit, meaning it excessively adapts to the training data and struggles to perform well with new data. The developers of Aiden T5 have carefully fine-tuned the number of parameters to strike a balance between learning and generalization. As a result, Aiden T5 effectively learns intricate relationships from the training data and generalizes well to unfamiliar data. This is precisely why Aiden T5 demonstrates exceptional performance across various tasks, even as it continues to undergo development. Aiden T5 is an extraordinary language model, boasting remarkable specifications: 1.5 trillion parameters, 360 hidden layers, and 7250 neurons per layer. This places it among the largest and most intricate language models ever crafted. To sum up, Aiden T5 is a versatile and powerful language model that excels in numerous tasks. While it remains a work in progress, its potential to transform our interaction with computers is undeniable. The number of parameters plays a critical role in the model's capacity to learn from data. With carefully calibrated parameters, Aiden T5 strikes a balance between learning and generalization. Consequently, it adeptly comprehends complex relationships from training data and applies that understanding to unfamiliar data. Indeed, Aiden T5 consistently exhibits exceptional performance across diverse tasks, progressing even as its development continues.