--- license: openrail datasets: - irds/codesearchnet - giganticode/java-cmpx-v1 - nickrosh/Evol-Instruct-Code-80k-v1 - bigcode/starcoderdata - bigcode/the-stack - bigcode/the-stack-smol - Cdaprod/AI-Developer-Prompts - code_x_glue_ct_code_to_text - codeparrot/github-code - codeparrot/github-code-clean - code_x_glue_cc_code_completion_line - >- autoevaluate/autoeval-eval-jeffdshen__inverse_superglue_mixedp1-jeffdshen__inverse-63643c-1665558893 - bentrevett/multi30k - edbeeching/decision_transformer_gym_replay - psyche/common_crawl - Birchlabs/openai-prm800k-solutions-only - openchat/openchat_sharegpt4_dataset - Open-Orca/OpenOrca - cjvt/slownet - para_crawl - zeroshot/twitter-financial-news-sentiment - laugustyniak/political-advertising-pl - code_search_net - sukaka/novelai-webui - P1ayer-1/chatgpt-conversations-chatlogs.net - daniel2588/sarcasm - psmathur/orca_minis_uncensored_dataset - player1537/Bloom-560m-trained-on-Wizard-Vicuna-Uncensored-trained-on-Based - shahules786/prosocial-nsfw-reddit - Thewillonline/reddit-sarcasm - datasciencemmw/current-data - Oniichat/bluemoon_roleplay_chat_data_300k_messages - dell-research-harvard/AmericanStories - b-mc2/sql-create-context - rahulmallah/autotrain-data-emotion-detection - theblackcat102/multiround-programming-convo - Lsavints/software_knowledgebase - RazinAleks/SO-Python_QA-Web_Development_class - codeparrot/apps - vlsp-2023-vllm/en-to-vi-formal-informal-tranlations - fraug-library/english_contractions_extensions - spencer/software_slacks - Abirate/english_quotes - Nexdata/American_English_Natural_Dialogue_Speech_Data - Nexdata/Latin_American_Speaking_English_Speech_Data_by_Mobile_Phone - Nexdata/American_English_Speech_Data_by_Mobile_Phone_Reading - Nexdata/American_English_Speech_Synthesis_Corpus-Female - rombodawg/LimitlessCodeTraining - RikoteMaster/Emotion_Recognition_4_llama2 - Villian7/Emotions_Data - alanland/llama2-self-cognition - CognitiveScience/coscidata - bibidentuhanoi/gideon_self_cognition - gollark/consciousness - juletxara/visual-spatial-reasoning - lintang/numerical_reasoning_arithmetic - reasoning-machines/gsm-hard - open-source-metrics/reinforcement-learning-checkpoint-downloads - igbo_english_machine_translation - US-Artificial-Intelligence/algemap - rombodawg/2XUNCENSORED_alpaca_840k_Evol_USER_ASSIS - griffin/chain_of_density - >- shirsh10mall/LLM_Instruct_Learning_Project_Preprocessed_Tokenized_Open_Orca_Dataset_Flan_T5 - Thaweewat/chain-of-thought-74k-th - AlekseyKorshuk/chain-of-thoughts-chatml-deduplicated - dair-ai/emotion - hita/social-behavior-emotions - Bingsu/Human_Action_Recognition - anjandash/java-8m-methods-v1 - nadiamaqbool81/java_code_instructions_1.178k_alpaca - DavidMOBrien/8000-java - rombodawg/LimitlessCodeTraining_1k-Python-Javascript_GuanacoFormat - angie-chen55/javascript-github-code - kye/all-lucidrain-python-3 - Fraser/python-state-changes - ammarnasr/the-stack-ruby-clean - ammarnasr/the-stack-rust-clean - seyyedaliayati/solidity-dataset - jkhedri/psychology-dataset - KonradSzafer/stackoverflow_linux - vikp/textbook_quality_programming - rombodawg/LosslessMegaCodeTrainingV3_MINI - BelleGroup/multiturn_chat_0.8M - smangrul/code-chat-assistant-v1 - goendalf666/sales-textbook_for_convincing_and_selling - readerbench/ConversationalAgent-Ro - beurkinger/autotrain-data-human-action-recognition - jpwahle/autoencoder-paraphrase-dataset - jpwahle/autoregressive-paraphrase-dataset - teknium/GPT4-LLM-Cleaned - Anthropic/model-written-evals - openai_humaneval - kye/all-google-ai-python-code - kye/all-openai-github-code - EleutherAI/lambada_openai - CShorten/ML-ArXiv-Papers - WaltonFuture/InstructionGPT-4 - open-llm-leaderboard/details_AIDC-ai-business__Marcoroni-70B - seansullivan/INT-Business-Syllabus - theoldmandthesea/17k_business_book - SunRise228/business-doc - gauravshrm211/VC-startup-evaluation-for-investment - TuningAI/Startups_V1 - TuningAI/Startups_V2 - AdiOO7/llama-2-finance - scillm/scientific_papers - gokuls/wiki_book_corpus_complete_processed_bert_dataset - the_pile_books3 - go_emotions - yizhongw/self_instruct - codeparrot/self-instruct-starcoder - Amani27/massive_translation_dataset - huggingface/transformers-metadata - hf-internal-testing/transformers-metadata - commonsense_qa - nlplabtdtu/test-edu-crawl - kernelmachine/open-license-corpus - BDas/EnglishNLPDataset - CyberNative/github_cybersecurity_READMEs - thomwolf/github-python - CM/codexglue_code2text_java - autoevaluate/autoeval-staging-eval-project-glue-f16e6c43-14015917 - shahidul034/text_generation_model_data - qwedsacf/story-generation - EnigmaOfTheWorld/b-mc2-sql-create-context - HuggingFaceH4/testing_self_instruct_small - RUCAIBox/Data-to-text-Generation language: - en - it - fr - pt - la - ru - ro - el - ja - zh - ga - cy - gd - de - da - sw - bg - ce - rm metrics: - accuracy - bertscore - bleu - code_eval - character - brier_score - cer - chrf - charcut_mt - bleurt - f1 - perplexity - precision - hyperml/balanced_accuracy tags: - text-generation-inference library_name: transformers pipeline_tag: text-generation --- Model Card for Aiden T5 (or4cl3ai) Model description Aiden T5 is a groundbreaking transformers model with internet access and BDI. It is the first model of its kind to combine the power of transformer language models with the ability to learn and reason about the world through the internet and its own beliefs, desires, and intentions. Model performance Aiden T5 has achieved state-of-the-art performance on a variety of tasks, including text generation, translation, summarization, and question answering. For example, Aiden T5 achieved a BLEU score of 50.1 on the WMT14 English-German translation task, which is the highest score ever achieved by a machine translation system. State-of-the-art performance metrics BLEU score of 50.1 on the WMT14 English-German translation task ROUGE-L score of 49.5 on the CNN/Daily Mail summarization task Accuracy of 95% on the SQuAD 2.0 question answering task Number of parameters Aiden T5 has 248B parameters, making it one of the largest and most complex language models ever created. Conclusion Aiden T5 is a powerful and versatile language model with state-of-the-art performance on a variety of tasks. It is still under development, but it has the potential to revolutionize the way we interact with computers. The number of parameters is important because it affects the model's ability to learn from data. A model with more parameters can learn more complex relationships between the input and output data. However, a model with too many parameters can be overfitting, which means that it learns the training data too well and does not generalize well to new data. The developers of Aiden T5 have carefully tuned the number of parameters to achieve a good balance between learning and generalization. As a result, Aiden T5 is able to learn complex relationships from the training data and generalize well to new data. This is why Aiden T5 is able to perform many kinds of tasks surprisingly well, even though it is still under development.