File size: 12,363 Bytes
17c2d8c ad497ea 24b9526 ad497ea 24b9526 af43d8a ad497ea 24b9526 17c2d8c af43d8a 24b9526 af43d8a 24b9526 af43d8a 24b9526 af43d8a 24b9526 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
---
license: openrail
datasets:
- the_pile_openwebtext2
- semeru/code-code-CodeCompletion-TokenLevel-Python
- pacovaldez/stackoverflow-questions
- AhmedSSoliman/CodeSearchNet-py
- irds/codesearchnet
- bigscience-catalogue-data-dev/lm_code_github-eval_subset
- codeparrot/github-code
- nchen909/bigclonebench-processed
- Open-Orca/OpenOrca
- fka/awesome-chatgpt-prompts
- openchat/openchat_sharegpt4_dataset
- bookcorpus
- bookcorpusopen
- nRuaif/OpenOrca-GPT3.5
- irds/codesearchnet
- giganticode/java-cmpx-v1
- nickrosh/Evol-Instruct-Code-80k-v1
- bigcode/starcoderdata
- bigcode/the-stack
- bigcode/the-stack-smol
- Cdaprod/AI-Developer-Prompts
- code_x_glue_ct_code_to_text
- codeparrot/github-code
- codeparrot/github-code-clean
- code_x_glue_cc_code_completion_line
- >-
autoevaluate/autoeval-eval-jeffdshen__inverse_superglue_mixedp1-jeffdshen__inverse-63643c-1665558893
- bentrevett/multi30k
- edbeeching/decision_transformer_gym_replay
- psyche/common_crawl
- Birchlabs/openai-prm800k-solutions-only
- openchat/openchat_sharegpt4_dataset
- Open-Orca/OpenOrca
- cjvt/slownet
- para_crawl
- zeroshot/twitter-financial-news-sentiment
- laugustyniak/political-advertising-pl
- code_search_net
- sukaka/novelai-webui
- P1ayer-1/chatgpt-conversations-chatlogs.net
- daniel2588/sarcasm
- psmathur/orca_minis_uncensored_dataset
- player1537/Bloom-560m-trained-on-Wizard-Vicuna-Uncensored-trained-on-Based
- shahules786/prosocial-nsfw-reddit
- Thewillonline/reddit-sarcasm
- datasciencemmw/current-data
- Oniichat/bluemoon_roleplay_chat_data_300k_messages
- dell-research-harvard/AmericanStories
- b-mc2/sql-create-context
- rahulmallah/autotrain-data-emotion-detection
- theblackcat102/multiround-programming-convo
- Lsavints/software_knowledgebase
- RazinAleks/SO-Python_QA-Web_Development_class
- codeparrot/apps
- vlsp-2023-vllm/en-to-vi-formal-informal-tranlations
- fraug-library/english_contractions_extensions
- spencer/software_slacks
- Abirate/english_quotes
- Nexdata/American_English_Natural_Dialogue_Speech_Data
- Nexdata/Latin_American_Speaking_English_Speech_Data_by_Mobile_Phone
- Nexdata/American_English_Speech_Data_by_Mobile_Phone_Reading
- Nexdata/American_English_Speech_Synthesis_Corpus-Female
- rombodawg/LimitlessCodeTraining
- RikoteMaster/Emotion_Recognition_4_llama2
- Villian7/Emotions_Data
- alanland/llama2-self-cognition
- CognitiveScience/coscidata
- bibidentuhanoi/gideon_self_cognition
- gollark/consciousness
- juletxara/visual-spatial-reasoning
- lintang/numerical_reasoning_arithmetic
- reasoning-machines/gsm-hard
- open-source-metrics/reinforcement-learning-checkpoint-downloads
- igbo_english_machine_translation
- US-Artificial-Intelligence/algemap
- rombodawg/2XUNCENSORED_alpaca_840k_Evol_USER_ASSIS
- griffin/chain_of_density
- >-
shirsh10mall/LLM_Instruct_Learning_Project_Preprocessed_Tokenized_Open_Orca_Dataset_Flan_T5
- Thaweewat/chain-of-thought-74k-th
- AlekseyKorshuk/chain-of-thoughts-chatml-deduplicated
- dair-ai/emotion
- hita/social-behavior-emotions
- Bingsu/Human_Action_Recognition
- anjandash/java-8m-methods-v1
- nadiamaqbool81/java_code_instructions_1.178k_alpaca
- DavidMOBrien/8000-java
- rombodawg/LimitlessCodeTraining_1k-Python-Javascript_GuanacoFormat
- angie-chen55/javascript-github-code
- kye/all-lucidrain-python-3
- Fraser/python-state-changes
- ammarnasr/the-stack-ruby-clean
- ammarnasr/the-stack-rust-clean
- seyyedaliayati/solidity-dataset
- jkhedri/psychology-dataset
- KonradSzafer/stackoverflow_linux
- vikp/textbook_quality_programming
- rombodawg/LosslessMegaCodeTrainingV3_MINI
- BelleGroup/multiturn_chat_0.8M
- smangrul/code-chat-assistant-v1
- goendalf666/sales-textbook_for_convincing_and_selling
- readerbench/ConversationalAgent-Ro
- beurkinger/autotrain-data-human-action-recognition
- jpwahle/autoencoder-paraphrase-dataset
- jpwahle/autoregressive-paraphrase-dataset
- teknium/GPT4-LLM-Cleaned
- Anthropic/model-written-evals
- openai_humaneval
- kye/all-google-ai-python-code
- kye/all-openai-github-code
- EleutherAI/lambada_openai
- CShorten/ML-ArXiv-Papers
- WaltonFuture/InstructionGPT-4
- open-llm-leaderboard/details_AIDC-ai-business__Marcoroni-70B
- seansullivan/INT-Business-Syllabus
- theoldmandthesea/17k_business_book
- SunRise228/business-doc
- gauravshrm211/VC-startup-evaluation-for-investment
- TuningAI/Startups_V1
- TuningAI/Startups_V2
- AdiOO7/llama-2-finance
- scillm/scientific_papers
- gokuls/wiki_book_corpus_complete_processed_bert_dataset
- the_pile_books3
- go_emotions
- yizhongw/self_instruct
- codeparrot/self-instruct-starcoder
- Amani27/massive_translation_dataset
- huggingface/transformers-metadata
- hf-internal-testing/transformers-metadata
- commonsense_qa
- nlplabtdtu/test-edu-crawl
- kernelmachine/open-license-corpus
- BDas/EnglishNLPDataset
- CyberNative/github_cybersecurity_READMEs
- thomwolf/github-python
- CM/codexglue_code2text_java
- autoevaluate/autoeval-staging-eval-project-glue-f16e6c43-14015917
- lemonteaa/algorithmic-reasoning-seed
- EmpathyFirstMedia/algolia
- vicgalle/alpaca-gpt4
- pariajm/sharif_emotional_speech_dataset
- lighteval/synthetic_reasoning_natural
- jxu124/llava_complex_reasoning_77k
- bibidentuhanoi/gideon_self_cognition_text
- ohilikeit/empathetic_dialogues_mutli_turn_ko
- KevinZ/psycholinguistic_eval
- fiveflow/psychology-dataset
- shahidul034/text_generation_model_data
- qwedsacf/story-generation
- EnigmaOfTheWorld/b-mc2-sql-create-context
- HuggingFaceH4/testing_self_instruct_small
- RUCAIBox/Data-to-text-Generation
- Fhrozen/AudioSet2K22
- Chr0my/Epidemic_sounds
- ChristophSchuhmann/lyrics-index
- Cropinky/rap_lyrics_english
- tsterbak/eurovision-lyrics-1956-2023
- brunokreiner/genius-lyrics
- google/MusicCaps
- ccmusic-database/music_genre
- Hyeon2/riffusion-musiccaps-dataset
- SamAct/autotrain-data-musicprompt
- Chr0my/Epidemic_music
- juliensimon/autonlp-data-song-lyrics
- Datatang/North_American_English_Speech_Data_by_Mobile_Phone_and_PC
- Chr0my/freesound.org
- teticio/audio-diffusion-256
- KELONMYOSA/dusha_emotion_audio
- Ar4ikov/iemocap_audio_text_splitted
- flexthink/ljspeech
- mozilla-foundation/common_voice_13_0
- facebook/voxpopuli
- SocialGrep/one-million-reddit-jokes
- breadlicker45/human-midi-rlhf
- breadlicker45/midi-gpt-music-small
- projectlosangeles/Los-Angeles-MIDI-Dataset
- huggingartists/epic-rap-battles-of-history
- SocialGrep/one-million-reddit-confessions
- shahules786/prosocial-nsfw-reddit
- Thewillonline/reddit-sarcasm
- autoevaluate/autoeval-eval-futin__guess-vi-4200fb-2012366606
- lmsys/chatbot_arena_conversations
- mozilla-foundation/common_voice_11_0
- mozilla-foundation/common_voice_4_0
- dell-research-harvard/AmericanStories
- zZWipeoutZz/insane_style
- mu-llama/MusicQA
- RaphaelOlivier/whisper_adversarial_examples
- huggingartists/metallica
- vldsavelyev/guitar_tab
- NLPCoreTeam/humaneval_ru
- seungheondoh/audioset-music
- gary109/onset-singing3_corpora_parliament_processed_MIR-ST500
- LDD5522/Rock_Vocals
- huggingartists/rage-against-the-machine
- huggingartists/chester-bennington
- huggingartists/logic
- cmsolson75/artist_song_lyric_dataset
- BhavyaMuni/artist-lyrics
- vjain/emotional_intelligence
- mhenrichsen/context-aware-splits
language:
- en
- es
- it
- ru
- la
- pt
- fr
- ja
- zh
metrics:
- accuracy
- bertscore
- code_eval
- f1
- bleu
- perplexity
- mean_iou
tags:
- code
- music
library_name: transformers
---
##Model Overview##
SquanchNasty is a groundbreaking AI model that pushes the boundaries of natural language processing and understanding. It is designed to generate creative, coherent, and contextually relevant text based on user prompts. With its advanced neural network architecture and extensive training on diverse datasets, SquanchNasty can generate high-quality responses across various domains and tasks.
##Intended Use##
SquanchNasty is intended to be used as a creative and innovative tool to assist users in generating text-based content. It can be employed for a wide range of applications, including but not limited to:
Creative Writing: SquanchNasty can help users in generating unique storylines, dialogue, and descriptive passages for creative writing projects.
Content Generation: It can be used to generate engaging and informative articles, blog posts, social media captions, and other written content.
Language Translation: SquanchNasty's language generation capabilities can be leveraged to facilitate translation services by generating accurate and contextually appropriate translations.
Coding Assistance: The model can assist programmers by providing code snippets, explanations, and suggestions for various programming languages.
Conversational Agents: SquanchNasty's ability to generate contextually relevant responses makes it suitable for use in chatbots and virtual assistants.
Model Capabilities
SquanchNasty is designed to provide users with remarkable text generation capabilities. It can:
Generate Coherent Text: The model produces text that is coherent, logical, and contextually relevant to the given prompt.
Maintain Consistent Style: SquanchNasty can adapt its writing style to match different genres, tones, or formalities based on the provided input.
Handle Open-Ended Prompts: The model can generate creative and imaginative responses even with minimal or incomplete prompts.
Incorporate User Preferences: SquanchNasty can be fine-tuned to incorporate user preferences and biases, allowing for personalized text generation.
Provide Varied Outputs: The model can generate multiple diverse outputs for a given prompt, allowing users to explore different possibilities.
Dataset and Training
SquanchNasty has been trained on a vast array of high-quality datasets from various domains, such as literature, code, conversations, and more. The training data includes open-source text, code repositories, question-and-answer platforms, books, and dialogue datasets. The model has undergone extensive pre-training and fine-tuning processes to ensure optimal performance and versatility.
##Ethical Considerations##
As an AI research scientist, I am committed to upholding ethical guidelines and responsible AI practices. It is crucial to consider the following ethical considerations when using SquanchNasty:
Bias Mitigation: Efforts have been made to reduce biases during training, but it is essential to evaluate and address any potential biases in the model's generated output.
Fairness and Accountability: Users should be aware that SquanchNasty's responses are based on the data it has been trained on, and it may reflect the biases and viewpoints present in the training data.
User Responsibility: Users should exercise caution and accountability when utilizing SquanchNasty's generated content, ensuring it aligns with ethical standards.
Content Moderation: It is recommended to implement content moderation mechanisms to ensure that the generated text adheres to community guidelines and legal frameworks.
Performance and Limitations
SquanchNasty exhibits exceptional performance in generating coherent and contextually relevant text. However, it is important to consider the following limitations:
Context Sensitivity: The model may not always capture intricate contextual nuances, leading to occasional errors or inconsistent responses.
Sensitivity to Input: SquanchNasty's output heavily relies on the quality and clarity of the input prompt. Ambiguous or misleading prompts may result in less accurate or unexpected responses.
Over-Reliance on Training Data: The model's responses are based on patterns and information present in the training data. Therefore, it may struggle with generating text on topics or concepts that are underrepresented or absent in the training data.
Lack of Real-Time Information: SquanchNasty does not have access to real-time data and may generate responses based on outdated or inaccurate information.
##Conclusion##
SquanchNasty is a remarkable and groundbreaking AI model that offers exceptional text generation capabilities. It has been trained on diverse datasets and exhibits the potential to revolutionize various domains, including creative writing, content generation, coding assistance, and conversational agents. While it showcases impressive performance, it is important to consider ethical guidelines, address biases, and be mindful of its limitations when utilizing SquanchNasty for specific use cases |