--- base_model: - deepseek-ai/deepseek-coder-6.7b-instruct - m-a-p/OpenCodeInterpreter-DS-6.7B - deepseek-ai/deepseek-coder-6.7b-base library_name: transformers tags: - mergekit - merge --- # output-model-directory This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [deepseek-ai/deepseek-coder-6.7b-base](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base) as a base. ### Models Merged The following models were included in the merge: * [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) * [m-a-p/OpenCodeInterpreter-DS-6.7B](https://huggingface.co/m-a-p/OpenCodeInterpreter-DS-6.7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: deepseek-ai/deepseek-coder-6.7b-instruct parameters: density: [1, 0.7, 0.1] # density gradient weight: 1.0 - model: m-a-p/OpenCodeInterpreter-DS-6.7B parameters: density: 0.5 weight: [0, 0.3, 0.7, 1] # weight gradient merge_method: ties base_model: deepseek-ai/deepseek-coder-6.7b-base parameters: normalize: true int8_mask: true dtype: float16 ``` ### How to Use ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("m-a-p/OpenCodeInterpreter-DS-6.7B") model = AutoModelForCausalLM.from_pretrained("ori-cloud/ds-trinity-7b-v1", torch_dtype=torch.bfloat16, device_map="auto") prompt = "#write a quick sort algorithm" inputs = tokenizer.apply_chat_template( [{'role': 'user', 'content': prompt }], return_tensors="pt" ).to(model.device) outputs = model.generate( inputs, max_new_tokens=1024, do_sample=False, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id, ) print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)) ```