--- license: apache-2.0 language: - en pipeline_tag: image-text-to-text tags: - multimodal library_name: transformers base_model: - Qwen/Qwen2-VL-7B-Instruct --- # Attention **This is a DepthWised upscaled model from 8B to 16B. This model still needs a continued pre-train to recover full knowledge and precision** **The continued-pretrained version will be available soon!** # DepthWise Algorithm (Executed Twice) ```python import copy from transformers import Qwen2VLForConditionalGeneration, AutoProcessor import torch base_model = "Qwen/Qwen2-VL-7B-Instruct" target_model = "./Qwen2-VL-16B-DepthWise" model = Qwen2VLForConditionalGeneration.from_pretrained( base_model, torch_dtype=torch.bfloat16, device_map="cpu", ) min_pixels = 256 * 28 * 28 max_pixels = 1280 * 28 * 28 processor = AutoProcessor.from_pretrained(base_model, min_pixels=min_pixels, max_pixels=max_pixels) new_model = model new_processor = processor optimal_part = 4 # For language model layers total_language_layers = len(model.model.layers) first_language_layers = int(total_language_layers - (total_language_layers / optimal_part)) last_language_layers = int(total_language_layers / optimal_part) language_layers_first = [copy.deepcopy(layer) for layer in model.model.layers[:first_language_layers]] language_layers_last = [copy.deepcopy(layer) for layer in model.model.layers[last_language_layers:]] new_model.model.layers = torch.nn.ModuleList(language_layers_first + language_layers_last) # For vision model blocks total_visual_layers = len(model.visual.blocks) first_visual_layers = int(total_visual_layers - (total_visual_layers / optimal_part)) last_visual_layers = int(total_visual_layers / optimal_part) visual_blocks_first = [copy.deepcopy(block) for block in model.visual.blocks[:first_visual_layers]] visual_blocks_last = [copy.deepcopy(block) for block in model.visual.blocks[last_visual_layers:]] new_model.visual.blocks = torch.nn.ModuleList(visual_blocks_first + visual_blocks_last) # Update config new_model.config.num_hidden_layers = len(new_model.model.layers) new_model.visual.config.num_blocks = len(new_model.visual.blocks) # Save new model new_model.save_pretrained(target_model, safe_serialization=True) new_processor.save_pretrained(target_model) ``` --- # Qwen2-VL-16B-DepthWise ## Introduction We're excited to unveil **Qwen2-VL**, the latest iteration of our Qwen-VL model, representing nearly a year of innovation. ### What’s New in Qwen2-VL? #### Key Enhancements: * **SoTA understanding of images of various resolution & ratio**: Qwen2-VL achieves state-of-the-art performance on visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc. * **Understanding videos of 20min+**: Qwen2-VL can understand videos over 20 minutes for high-quality video-based question answering, dialog, content creation, etc. * **Agent that can operate your mobiles, robots, etc.**: with the abilities of complex reasoning and decision making, Qwen2-VL can be integrated with devices like mobile phones, robots, etc., for automatic operation based on visual environment and text instructions. * **Multilingual Support**: to serve global users, besides English and Chinese, Qwen2-VL now supports the understanding of texts in different languages inside images, including most European languages, Japanese, Korean, Arabic, Vietnamese, etc. #### Model Architecture Updates: * **Naive Dynamic Resolution**: Unlike before, Qwen2-VL can handle arbitrary image resolutions, mapping them into a dynamic number of visual tokens, offering a more human-like visual processing experience.
* **Multimodal Rotary Position Embedding (M-ROPE)**: Decomposes positional embedding into parts to capture 1D textual, 2D visual, and 3D video positional information, enhancing its multimodal processing capabilities.
We have three models with 2, 7 and 72 billion parameters. This repo contains the instruction-tuned 7B Qwen2-VL model. For more information, visit our [Blog](https://qwenlm.github.io/blog/qwen2-vl/) and [GitHub](https://github.com/QwenLM/Qwen2-VL).
## Evaluation
### Image Benchmarks
| Benchmark | InternVL2-8B | MiniCPM-V 2.6 | GPT-4o-mini | **Qwen2-VL-7B** |
| :--- | :---: | :---: | :---: | :---: |
| MMMUval | 51.8 | 49.8 | **60**| 54.1 |
| DocVQAtest | 91.6 | 90.8 | - | **94.5** |
| InfoVQAtest | 74.8 | - | - |**76.5** |
| ChartQAtest | **83.3** | - |- | 83.0 |
| TextVQAval | 77.4 | 80.1 | -| **84.3** |
| OCRBench | 794 | **852** | 785 | 845 |
| MTVQA | - | - | -| **26.3** |
| VCRen easy | - | 73.88 | 83.60 | **89.70** |
| VCRzh easy | - | 10.18| 1.10 | **59.94** |
| RealWorldQA | 64.4 | - | - | **70.1** |
| MMEsum | 2210.3 | **2348.4** | 2003.4| 2326.8 |
| MMBench-ENtest | 81.7 | - | - | **83.0** |
| MMBench-CNtest | **81.2** | - | - | 80.5 |
| MMBench-V1.1test | 79.4 | 78.0 | 76.0| **80.7** |
| MMT-Benchtest | - | - | - |**63.7** |
| MMStar | **61.5** | 57.5 | 54.8 | 60.7 |
| MMVetGPT-4-Turbo | 54.2 | 60.0 | **66.9** | 62.0 |
| HallBenchavg | 45.2 | 48.1 | 46.1| **50.6** |
| MathVistatestmini | 58.3 | **60.6** | 52.4 | 58.2 |
| MathVision | - | - | - | **16.3** |
### Video Benchmarks
| Benchmark | Internvl2-8B | LLaVA-OneVision-7B | MiniCPM-V 2.6 | **Qwen2-VL-7B** |
| :--- | :---: | :---: | :---: | :---: |
| MVBench | 66.4 | 56.7 | - | **67.0** |
| PerceptionTesttest | - | 57.1 | - | **62.3** |
| EgoSchematest | - | 60.1 | - | **66.7** |
| Video-MMEwo/w subs | 54.0/56.9 | 58.2/- | 60.9/63.6 | **63.3**/**69.0** |
## Requirements
The code of Qwen2-VL has been in the latest Hugging face transformers and we advise you to build from source with command `pip install git+https://github.com/huggingface/transformers`, or you might encounter the following error:
```
KeyError: 'qwen2_vl'
```
## Quickstart
We offer a toolkit to help you handle various types of visual input more conveniently. This includes base64, URLs, and interleaved images and videos. You can install it using the following command:
```bash
pip install qwen-vl-utils
```
Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_vl_utils`:
```python
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
# default: Load the model on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"orion-research/Qwen2-VL-16B-DepthWise", torch_dtype="auto", device_map="auto"
)
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
# model = Qwen2VLForConditionalGeneration.from_pretrained(
# "orion-research/Qwen2-VL-16B-DepthWise",
# torch_dtype=torch.bfloat16,
# attn_implementation="flash_attention_2",
# device_map="auto",
# )
# default processer
processor = AutoProcessor.from_pretrained("orion-research/Qwen2-VL-16B-DepthWise")
# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
# min_pixels = 256*28*28
# max_pixels = 1280*28*28
# processor = AutoProcessor.from_pretrained("orion-research/Qwen2-VL-16B-DepthWise", min_pixels=min_pixels, max_pixels=max_pixels)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
Without qwen_vl_utils
```python
from PIL import Image
import requests
import torch
from torchvision import io
from typing import Dict
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
# Load the model in half-precision on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"orion-research/Qwen2-VL-16B-DepthWise", torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained("orion-research/Qwen2-VL-16B-DepthWise")
# Image
url = "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
conversation = [
{
"role": "user",
"content": [
{
"type": "image",
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preprocess the inputs
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
# Excepted output: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe this image.<|im_end|>\n<|im_start|>assistant\n'
inputs = processor(
text=[text_prompt], images=[image], padding=True, return_tensors="pt"
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [
output_ids[len(input_ids) :]
for input_ids, output_ids in zip(inputs.input_ids, output_ids)
]
output_text = processor.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
print(output_text)
```
Multi image inference
```python
# Messages containing multiple images and a text query
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "file:///path/to/image1.jpg"},
{"type": "image", "image": "file:///path/to/image2.jpg"},
{"type": "text", "text": "Identify the similarities between these images."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
Video inference
```python
# Messages containing a images list as a video and a text query
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": [
"file:///path/to/frame1.jpg",
"file:///path/to/frame2.jpg",
"file:///path/to/frame3.jpg",
"file:///path/to/frame4.jpg",
],
"fps": 1.0,
},
{"type": "text", "text": "Describe this video."},
],
}
]
# Messages containing a video and a text query
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": "file:///path/to/video1.mp4",
"max_pixels": 360 * 420,
"fps": 1.0,
},
{"type": "text", "text": "Describe this video."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
Batch inference
```python
# Sample messages for batch inference
messages1 = [
{
"role": "user",
"content": [
{"type": "image", "image": "file:///path/to/image1.jpg"},
{"type": "image", "image": "file:///path/to/image2.jpg"},
{"type": "text", "text": "What are the common elements in these pictures?"},
],
}
]
messages2 = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who are you?"},
]
# Combine messages for batch processing
messages = [messages1, messages1]
# Preparation for batch inference
texts = [
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
for msg in messages
]
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=texts,
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Batch Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_texts = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_texts)
```