File size: 22,953 Bytes
c9e4fad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
# Copyright 2022 MosaicML Examples authors
# SPDX-License-Identifier: Apache-2.0
# Copyright 2023 OLMo Authors
# License: Apache-2.0
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
# License: Apache-2.0
import math
from typing import Optional, Union
import torch
import torch.nn as nn
from .utils import StrEnum
from .configuration_bert import FlexBertConfig
from .normalization import RMSNorm
__all__ = ["init_weights", "ModuleType", "InitFnType"]
class InitFnType(StrEnum):
mitchell = "mitchell"
"""
The strategy suggested to us by Mitchell Wortsman from UW.
This uses a truncated normal distribution with an adaptive standard deviation that depends
on the size of the weights as well as the depth of the layer.
"""
normal = "normal"
"""
All weights are initialized from the same normal distribution.
"""
default = "default"
"""
All weights are initialized with the default HuggingFace Bert method. Set init_std=0.02 to match.
"""
kaiming_normal = "kaiming_normal"
"""
All weights are initialized with the Kaiming method from a normal distribution.
Note this currently won't work with FSDP.
"""
fan_in = "fan_in"
"""
"Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in``
is the input dimensionality of the kernel.
"""
full_megatron = "full_megatron"
"""
This is what metaseq calls "full megatron init". It is the init used for Llama 2.
"""
class ModuleType(StrEnum):
in_module = "in"
out_module = "out"
emb = "emb"
final_out = "final_out"
def init_weights(
config: FlexBertConfig,
module: Union[nn.Linear, nn.Embedding],
layer_dim: Optional[int] = None,
layer_id: Optional[int] = None,
std_factor: float = 1.0,
type_of_module: Optional[ModuleType] = None,
) -> None:
"""
Initialize weights of a linear or embedding module.
:param config: The model config.
:param module: The linear or embedding submodule to initialize.
:param layer_dim: The effective input dimensionality of the weights. This could be smaller than the actual dimensions
for fused layers.
:param layer_id: When set, the standard deviation for the "mitchell" method will be adjusted by
``1 / sqrt(2 * (layer_id + 1))``.
"""
if config.init_method == InitFnType.full_megatron and config.init_small_embedding:
raise ValueError("Cannot use 'small_embedding_init' with 'full_megatron' init.")
layer_dim = layer_dim if layer_dim is not None else config.hidden_size
if config.init_method == InitFnType.normal:
std = config.init_std * std_factor
if config.init_cutoff_factor is not None:
cutoff_value = config.init_cutoff_factor * std
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value)
else:
nn.init.normal_(module.weight, mean=0.0, std=std)
elif config.init_method == InitFnType.mitchell:
std = std_factor / math.sqrt(layer_dim)
if layer_id is not None:
std = std / math.sqrt(2 * (layer_id + 1))
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-3 * std, b=3 * std)
elif config.init_method == InitFnType.kaiming_normal:
nn.init.kaiming_normal_(module.weight, nonlinearity="relu")
elif config.init_method == InitFnType.fan_in:
std = std_factor / math.sqrt(layer_dim)
nn.init.normal_(module.weight, mean=0.0, std=std)
elif config.init_method == InitFnType.full_megatron:
if type_of_module is None:
raise RuntimeError(f"When using the {InitFnType.full_megatron} init, every module must have a type.")
cutoff_factor = config.init_cutoff_factor
if cutoff_factor is None:
cutoff_factor = 3
if type_of_module == ModuleType.in_module:
# for att_proj (same as QKV), ff_proj
std = config.init_std
elif type_of_module == ModuleType.out_module:
# for attn_out, ff_out
std = config.init_std / math.sqrt(2.0 * config.num_hidden_layers)
elif type_of_module == ModuleType.emb:
# positional embeddings (wpe)
# token embeddings (wte)
std = config.init_std
elif type_of_module == ModuleType.final_out:
# final output (ff_out)
std = config.hidden_size**-0.5
else:
raise RuntimeError(f"Unknown module type '{type_of_module}'")
nn.init.trunc_normal_(
module.weight,
mean=0.0,
std=std,
a=-cutoff_factor * std,
b=cutoff_factor * std,
)
elif config.init_method == InitFnType.default:
# default hugging face bert initialization
# normalization layers already init to ones and zeros
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=config.init_std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=config.init_std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
else:
raise NotImplementedError(config.init_method)
if isinstance(module, nn.Linear):
if module.bias is not None:
nn.init.zeros_(module.bias)
if config.init_method == InitFnType.normal and getattr(module, "_is_residual", False):
with torch.no_grad():
module.weight.div_(math.sqrt(2 * config.num_hidden_layers))
if isinstance(module, nn.Embedding) and config.init_small_embedding:
nn.init.uniform_(module.weight, a=-1e-4, b=1e-4)
class TileMode(StrEnum):
center_weights = "center_weights"
tile_weights_from_edge = "tile_weights_from_edge"
tile_weights_from_middle = "tile_weights_from_middle"
def tile_weight(
pretrained_weights: torch.Tensor,
new_weights: torch.Tensor,
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
) -> torch.Tensor:
"""
Tile or center an input tensor to a larger desired size. Works for both 2D and 1D tensors.
Args:
pretrained_weights (torch.Tensor): The input tensor to be tiled or centered (1D or 2D).
new_weights (torch.Tensor): The tensor with the desired size.
mode (Union[str, TileMode]): 'center_weights', 'tile_weights_from_edge', or 'tile_weights_from_middle'
Returns:
torch.Tensor: The resulting tensor of the desired size.
"""
assert pretrained_weights.dim() in (1, 2), "Input tensor must be 1-dimensional or 2-dimensional"
if isinstance(mode, str):
mode = TileMode(mode)
pretrained_weights = pretrained_weights.clone()
if pretrained_weights.dim() == 1:
return _tile_1d(pretrained_weights, new_weights, mode)
else:
return _tile_2d(pretrained_weights, new_weights, mode)
def _tile_1d(pretrained_weights: torch.Tensor, new_weights: torch.Tensor, mode: TileMode) -> torch.Tensor:
assert pretrained_weights.dim() == 1, "Input tensor must be 1-dimensional"
input_size = pretrained_weights.shape[0]
new_size = new_weights.shape[0]
assert new_size >= input_size, "Desired size must be greater than or equal to input size"
if mode == TileMode.center_weights:
offset = (new_size - input_size) // 2
new_weights[offset : offset + input_size] = pretrained_weights
return new_weights.clone()
elif mode == TileMode.tile_weights_from_edge:
repeat_count = (new_size + input_size - 1) // input_size
tiled_tensor = pretrained_weights.repeat(repeat_count)
return tiled_tensor[:new_size].clone()
elif mode == TileMode.tile_weights_from_middle:
# Calculate offsets to center the original tensor
offset = (new_size - input_size) // 2
# Create a new tensor with the desired size
result = torch.zeros(new_size, dtype=pretrained_weights.dtype, device=pretrained_weights.device)
# Place the original tensor in the center
result[offset : offset + input_size] = pretrained_weights
# Tile the left and right sides
for i in range(offset):
result[offset - 1 - i] = pretrained_weights[input_size - 1 - (i % input_size)]
for i in range(offset + input_size, new_size):
result[i] = pretrained_weights[(i - offset) % input_size]
return result.clone()
def _tile_2d(pretrained_weights: torch.Tensor, new_weights: torch.Tensor, mode: TileMode) -> torch.Tensor:
assert pretrained_weights.dim() == 2, "Input tensor must be 2-dimensional"
input_height, input_width = pretrained_weights.shape
new_height, new_width = new_weights.shape
assert new_height >= input_height, "Desired height must be greater than or equal to input height"
assert new_width >= input_width, "Desired width must be greater than or equal to input width"
if mode == TileMode.center_weights:
height_offset = (new_height - input_height) // 2
width_offset = (new_width - input_width) // 2
new_weights[height_offset : height_offset + input_height, width_offset : width_offset + input_width] = pretrained_weights # fmt: skip
return new_weights.clone()
elif mode == TileMode.tile_weights_from_edge:
repeat_height = (new_height + input_height - 1) // input_height
repeat_width = (new_width + input_width - 1) // input_width
tiled_tensor = pretrained_weights.repeat(repeat_height, repeat_width)
return tiled_tensor[:new_height, :new_width].clone()
elif mode == TileMode.tile_weights_from_middle:
# Calculate offsets to center the original tensor
height_offset = (new_height - input_height) // 2
width_offset = (new_width - input_width) // 2
# Create a new tensor with the desired width and input height
horizontal_tiled = torch.zeros(
input_height, new_width, dtype=pretrained_weights.dtype, device=pretrained_weights.device
)
# Place the original tensor in the center horizontally
horizontal_tiled[:, width_offset : width_offset + input_width] = pretrained_weights
# Tile the left and right sides
for i in range(width_offset):
horizontal_tiled[:, i] = horizontal_tiled[
:, width_offset + input_width - 1 - (width_offset - i - 1) % input_width
]
for i in range(width_offset + input_width, new_width):
horizontal_tiled[:, i] = horizontal_tiled[:, width_offset + (i - width_offset) % input_width]
# Now tile vertically
result = torch.zeros(new_height, new_width, dtype=pretrained_weights.dtype, device=pretrained_weights.device)
result[height_offset : height_offset + input_height, :] = horizontal_tiled
# Tile top
for i in range(height_offset):
row_to_copy = (input_height - 1) - (i % input_height)
result[height_offset - 1 - i, :] = horizontal_tiled[row_to_copy, :]
# Tile bottom
for i in range(height_offset + input_height, new_height):
row_to_copy = (i - height_offset) % input_height
result[i, :] = horizontal_tiled[row_to_copy, :]
return result.clone()
def tile_fused_qkv(
pretrained_qkv_weight: torch.Tensor,
new_qkv_weight: torch.Tensor,
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
):
"""
Tile the weights of a fused pretrained QKV layer to a new, larger QKV dimension.
Args:
pretrained_qkv_weight (torch.Tensor): The original fused QKV layer
new_qkv_weight (torch.Tensor): The new fused QKV layer with larger linear_dim
mode (Union[str, TileMode]): The tiling mode to use
Returns:
torch.Tensor: The new fused QKV layer with tiled weights
"""
# Split QKV, assume new_q, new_k, new_v are the same shape
pretrained_q, pretrained_k, pretrained_v = pretrained_qkv_weight.chunk(3, dim=0)
new_q, new_k, new_v = new_qkv_weight.chunk(3, dim=0)
# Tile Q, K, V separately
new_q = tile_weight(pretrained_q, new_q, mode=mode)
new_k = tile_weight(pretrained_k, new_k, mode=mode)
new_v = tile_weight(pretrained_v, new_v, mode=mode)
# Concatenate tiled Q, K, V
return torch.cat([new_q, new_k, new_v], dim=0)
def tile_fused_glu(
pretrained_glu_weight: torch.Tensor,
new_glu_weight: torch.Tensor,
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
):
"""
Tile the weights of a fused pretrained GLU layer to a new, larger GLU dimension.
Args:
pretrained_glu_weight (torch.Tensor): The original fused GLU layer
new_glu_weight (torch.Tensor): The new fused GLU layer with larger linear_dim
mode (Union[str, TileMode]): The tiling mode to use
Returns:
torch.Tensor: The new fused GLU layer with tiled weights
"""
# Split GLU, assume new_glu_wi, new_glu_wg are the same shape
pretrained_glu_wi, pretrained_glu_wg = pretrained_glu_weight.chunk(2, dim=0)
new_glu_wi, new_glu_wg = new_glu_weight.chunk(2, dim=0)
# Tile GLU separately
new_glu_wi = tile_weight(pretrained_glu_wi, new_glu_wi, mode=mode)
new_glu_wg = tile_weight(pretrained_glu_wg, new_glu_wg, mode=mode)
# Concatenate tiled GLU
return torch.cat([new_glu_wi, new_glu_wg], dim=0)
def tile_fused_qkvff(
pretrained_qkvff_weight: torch.Tensor,
new_qkvff_weight: torch.Tensor,
pretrained_attn_size: int,
pretrained_mlp_size: int,
new_attn_size: int,
new_mlp_size: int,
is_glu: bool = False,
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
):
"""
Tile the weights of a fused pretrained QKVFF layer to a new, larger QKVFF dimension.
Args:
pretrained_qkvff_weight (torch.Tensor): The original fused QKVFF layer
new_qkvff_weight (torch.Tensor): The new fused QKVFF layer with larger linear_dim
pretrained_attn_size (int): The attention size of the pretrained fused QKVFF layer
pretrained_mlp_size (int): The mlp size of the pretrained fused QKVFF layer
new_attn_size (int): The attention size of the new fused QKVFF layer
new_mlp_size (int): The mlp size of the new fused QKVFF layer
is_glu (bool): Whether the QKVFF layer is a GLU layer
mode (Union[str, TileMode]): The tiling mode to use
Returns:
torch.Tensor: The new fused QKVFF layer with tiled weights
"""
# Split QKVFF
pretrained_qkv, pretrained_ff = pretrained_qkvff_weight.split([pretrained_attn_size, pretrained_mlp_size], dim=0)
new_qkv, new_ff = new_qkvff_weight.split([new_attn_size, new_mlp_size], dim=0)
# Tile QKVFF separately
new_qkv = tile_fused_qkv(pretrained_qkv, new_qkv, mode=mode)
if is_glu:
new_ff = tile_fused_glu(pretrained_ff, new_ff, mode=mode)
else:
new_ff = tile_weight(pretrained_ff, new_ff, mode=mode)
# Concatenate tiled QKVFF
return torch.cat([new_qkv, new_ff], dim=0)
class TileLinear(StrEnum):
wqkv = "wqkv"
glu = "glu"
wqkvff = "wqkvff"
default = "default"
def tile_linear(
pretrained_linear: nn.Linear,
new_linear: nn.Linear,
linear_type: Union[str, TileLinear] = TileLinear.default,
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
pretrained_attn_size: Optional[int] = None,
pretrained_mlp_size: Optional[int] = None,
new_attn_size: Optional[int] = None,
new_mlp_size: Optional[int] = None,
wqkvff_is_glu: Optional[bool] = None,
bias_only: Optional[bool] = False,
):
"""
Tile the weights of a linear layer to a new, larger linear dimension.
Args:
pretrained_linear (nn.Linear): The original linear layer
new_linear (nn.Linear): The new linear layer with larger linear_dim
linear_type (Union[str, TileLinear]): The type of linear layer to tile
mode (Union[str, TileMode]): The tiling mode to use
pretrained_attn_size (int): The attention size of the pretrained linear layer. Only used if linear_type is wqkvff.
pretrained_mlp_size (int): The mlp size of the pretrained linear layer. Only used if linear_type is wqkvff.
new_attn_size (int): The attention size of the new linear layer. Only used if linear_type is wqkvff.
new_mlp_size (int): The mlp size of the new linear layer. Only used if linear_type is wqkvff.
wqkvff_is_glu (bool): Whether the wqkvff layer is a GLU layer. Only used if linear_type is wqkvff.
bias_only (bool): Whether to only tile the bias. Only used if tiling weight tied decoder.
"""
if isinstance(linear_type, str):
linear_type = TileLinear(linear_type)
if isinstance(mode, str):
mode = TileMode(mode)
with torch.no_grad():
if linear_type == TileLinear.wqkv:
if not bias_only:
new_linear.weight = nn.Parameter(
tile_fused_qkv(pretrained_linear.weight, new_linear.weight, mode=mode),
requires_grad=new_linear.weight.requires_grad,
)
if pretrained_linear.bias is not None:
new_linear.bias = nn.Parameter(
tile_fused_qkv(pretrained_linear.bias, new_linear.bias, mode=mode),
requires_grad=new_linear.bias.requires_grad,
)
elif linear_type == TileLinear.glu:
if not bias_only:
new_linear.weight = nn.Parameter(
tile_fused_glu(pretrained_linear.weight, new_linear.weight, mode=mode),
requires_grad=new_linear.weight.requires_grad,
)
if pretrained_linear.bias is not None:
new_linear.bias = nn.Parameter(
tile_fused_glu(pretrained_linear.bias, new_linear.bias, mode=mode),
requires_grad=new_linear.bias.requires_grad,
)
elif linear_type == TileLinear.wqkvff:
if not bias_only:
new_linear.weight = nn.Parameter(
tile_fused_qkvff(
pretrained_linear.weight,
new_linear.weight,
pretrained_attn_size,
pretrained_mlp_size,
new_attn_size,
new_mlp_size,
wqkvff_is_glu,
mode=mode,
),
requires_grad=new_linear.weight.requires_grad,
)
if pretrained_linear.bias is not None:
new_linear.bias = nn.Parameter(
tile_fused_qkvff(
pretrained_linear.bias,
new_linear.bias,
pretrained_attn_size,
pretrained_mlp_size,
new_attn_size,
new_mlp_size,
wqkvff_is_glu,
mode=mode,
),
requires_grad=new_linear.bias.requires_grad,
)
else:
if not bias_only:
new_linear.weight = nn.Parameter(
tile_weight(pretrained_linear.weight, new_linear.weight, mode=mode),
requires_grad=new_linear.weight.requires_grad,
)
if pretrained_linear.bias is not None:
new_linear.bias = nn.Parameter(
tile_weight(pretrained_linear.bias, new_linear.bias, mode=mode),
requires_grad=new_linear.bias.requires_grad,
)
def tile_norm(
pretrained_norm: Union[nn.LayerNorm, RMSNorm, nn.Identity],
new_norm: Union[nn.LayerNorm, RMSNorm, nn.Identity],
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
):
"""
Tile the weights of a pretrained norm layer to a new, larger layer norm dimension.
Args:
pretrained_norm (Union[nn.LayerNorm, RMSNorm, nn.Identity]): The original norm layer
new_norm (Union[nn.LayerNorm, RMSNorm, nn.Identity]): The new norm layer with larger layer norm dimension
mode (Union[str, TileMode]): The Phi-style weight tiling mode to use
"""
if isinstance(pretrained_norm, nn.Identity):
return
if isinstance(mode, str):
mode = TileMode(mode)
with torch.no_grad():
new_norm.weight.data = nn.Parameter(
tile_weight(pretrained_norm.weight, new_norm.weight, mode=mode),
requires_grad=new_norm.weight.requires_grad,
)
if hasattr(pretrained_norm, "bias") and pretrained_norm.bias is not None:
new_norm.bias.data = nn.Parameter(
tile_weight(pretrained_norm.bias, new_norm.bias, mode=mode),
requires_grad=new_norm.bias.requires_grad,
)
def tile_embedding(
pretrained_embedding: nn.Embedding,
new_embedding: nn.Embedding,
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
) -> nn.Embedding:
"""
Tile the weights of an embedding layer to a new, larger embedding dimension.
Args:
pretrained_embedding (nn.Embedding): The original embedding layer
new_embedding (nn.Embedding): The new embedding layer with larger embedding_dim
tile_mode (Union[str, TileMode]): The Phi-style weight tiling mode to use
Returns:
nn.Embedding: The new embedding layer with tiled weights
"""
with torch.no_grad():
# Ensure vocabulary size remains the same
if pretrained_embedding.num_embeddings != new_embedding.num_embeddings:
raise ValueError("Vocabulary size (num_embeddings) must remain constant")
# Ensure new embedding dimension is larger
if new_embedding.embedding_dim <= pretrained_embedding.embedding_dim:
raise ValueError("New embedding_dim must be larger than the old embedding_dim")
# Tile the weights
new_embedding.weight.data = nn.Parameter(
tile_weight(pretrained_embedding.weight, new_embedding.weight, mode=mode),
requires_grad=new_embedding.weight.requires_grad,
)
# Handle padding_idx if it exists
if pretrained_embedding.padding_idx is not None:
if new_embedding.padding_idx is None:
new_embedding.padding_idx = pretrained_embedding.padding_idx
else:
assert new_embedding.padding_idx == pretrained_embedding.padding_idx, "padding_idx must remain the same"
|