File size: 22,953 Bytes
c9e4fad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# Copyright 2022 MosaicML Examples authors
# SPDX-License-Identifier: Apache-2.0

# Copyright 2023 OLMo Authors
# License: Apache-2.0

# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
# License: Apache-2.0

import math
from typing import Optional, Union

import torch
import torch.nn as nn

from .utils import StrEnum

from .configuration_bert import FlexBertConfig
from .normalization import RMSNorm

__all__ = ["init_weights", "ModuleType", "InitFnType"]


class InitFnType(StrEnum):
    mitchell = "mitchell"
    """
    The strategy suggested to us by Mitchell Wortsman from UW.
    This uses a truncated normal distribution with an adaptive standard deviation that depends
    on the size of the weights as well as the depth of the layer.
    """

    normal = "normal"
    """
    All weights are initialized from the same normal distribution.
    """

    default = "default"
    """
    All weights are initialized with the default HuggingFace Bert method. Set init_std=0.02 to match.
    """

    kaiming_normal = "kaiming_normal"
    """
    All weights are initialized with the Kaiming method from a normal distribution.
    Note this currently won't work with FSDP.
    """

    fan_in = "fan_in"
    """
    "Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in``
    is the input dimensionality of the kernel.
    """

    full_megatron = "full_megatron"
    """
    This is what metaseq calls "full megatron init". It is the init used for Llama 2.
    """


class ModuleType(StrEnum):
    in_module = "in"
    out_module = "out"
    emb = "emb"
    final_out = "final_out"


def init_weights(
    config: FlexBertConfig,
    module: Union[nn.Linear, nn.Embedding],
    layer_dim: Optional[int] = None,
    layer_id: Optional[int] = None,
    std_factor: float = 1.0,
    type_of_module: Optional[ModuleType] = None,
) -> None:
    """
    Initialize weights of a linear or embedding module.

    :param config: The model config.
    :param module: The linear or embedding submodule to initialize.
    :param layer_dim: The effective input dimensionality of the weights. This could be smaller than the actual dimensions
        for fused layers.
    :param layer_id: When set, the standard deviation for the "mitchell" method will be adjusted by
        ``1 / sqrt(2 * (layer_id + 1))``.
    """
    if config.init_method == InitFnType.full_megatron and config.init_small_embedding:
        raise ValueError("Cannot use 'small_embedding_init' with 'full_megatron' init.")

    layer_dim = layer_dim if layer_dim is not None else config.hidden_size
    if config.init_method == InitFnType.normal:
        std = config.init_std * std_factor
        if config.init_cutoff_factor is not None:
            cutoff_value = config.init_cutoff_factor * std
            nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value)
        else:
            nn.init.normal_(module.weight, mean=0.0, std=std)
    elif config.init_method == InitFnType.mitchell:
        std = std_factor / math.sqrt(layer_dim)
        if layer_id is not None:
            std = std / math.sqrt(2 * (layer_id + 1))
        nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-3 * std, b=3 * std)
    elif config.init_method == InitFnType.kaiming_normal:
        nn.init.kaiming_normal_(module.weight, nonlinearity="relu")
    elif config.init_method == InitFnType.fan_in:
        std = std_factor / math.sqrt(layer_dim)
        nn.init.normal_(module.weight, mean=0.0, std=std)
    elif config.init_method == InitFnType.full_megatron:
        if type_of_module is None:
            raise RuntimeError(f"When using the {InitFnType.full_megatron} init, every module must have a type.")

        cutoff_factor = config.init_cutoff_factor
        if cutoff_factor is None:
            cutoff_factor = 3

        if type_of_module == ModuleType.in_module:
            # for att_proj (same as QKV), ff_proj
            std = config.init_std
        elif type_of_module == ModuleType.out_module:
            # for attn_out, ff_out
            std = config.init_std / math.sqrt(2.0 * config.num_hidden_layers)
        elif type_of_module == ModuleType.emb:
            # positional embeddings (wpe)
            # token embeddings (wte)
            std = config.init_std
        elif type_of_module == ModuleType.final_out:
            # final output (ff_out)
            std = config.hidden_size**-0.5
        else:
            raise RuntimeError(f"Unknown module type '{type_of_module}'")

        nn.init.trunc_normal_(
            module.weight,
            mean=0.0,
            std=std,
            a=-cutoff_factor * std,
            b=cutoff_factor * std,
        )
    elif config.init_method == InitFnType.default:
        # default hugging face bert initialization
        # normalization layers already init to ones and zeros
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=config.init_std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=config.init_std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
    else:
        raise NotImplementedError(config.init_method)

    if isinstance(module, nn.Linear):
        if module.bias is not None:
            nn.init.zeros_(module.bias)

        if config.init_method == InitFnType.normal and getattr(module, "_is_residual", False):
            with torch.no_grad():
                module.weight.div_(math.sqrt(2 * config.num_hidden_layers))

    if isinstance(module, nn.Embedding) and config.init_small_embedding:
        nn.init.uniform_(module.weight, a=-1e-4, b=1e-4)


class TileMode(StrEnum):
    center_weights = "center_weights"
    tile_weights_from_edge = "tile_weights_from_edge"
    tile_weights_from_middle = "tile_weights_from_middle"


def tile_weight(
    pretrained_weights: torch.Tensor,
    new_weights: torch.Tensor,
    mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
) -> torch.Tensor:
    """
    Tile or center an input tensor to a larger desired size. Works for both 2D and 1D tensors.

    Args:
    pretrained_weights (torch.Tensor): The input tensor to be tiled or centered (1D or 2D).
    new_weights (torch.Tensor): The tensor with the desired size.
    mode (Union[str, TileMode]): 'center_weights', 'tile_weights_from_edge', or 'tile_weights_from_middle'

    Returns:
    torch.Tensor: The resulting tensor of the desired size.
    """
    assert pretrained_weights.dim() in (1, 2), "Input tensor must be 1-dimensional or 2-dimensional"
    if isinstance(mode, str):
        mode = TileMode(mode)

    pretrained_weights = pretrained_weights.clone()

    if pretrained_weights.dim() == 1:
        return _tile_1d(pretrained_weights, new_weights, mode)
    else:
        return _tile_2d(pretrained_weights, new_weights, mode)


def _tile_1d(pretrained_weights: torch.Tensor, new_weights: torch.Tensor, mode: TileMode) -> torch.Tensor:
    assert pretrained_weights.dim() == 1, "Input tensor must be 1-dimensional"
    input_size = pretrained_weights.shape[0]
    new_size = new_weights.shape[0]
    assert new_size >= input_size, "Desired size must be greater than or equal to input size"

    if mode == TileMode.center_weights:
        offset = (new_size - input_size) // 2
        new_weights[offset : offset + input_size] = pretrained_weights
        return new_weights.clone()
    elif mode == TileMode.tile_weights_from_edge:
        repeat_count = (new_size + input_size - 1) // input_size
        tiled_tensor = pretrained_weights.repeat(repeat_count)
        return tiled_tensor[:new_size].clone()
    elif mode == TileMode.tile_weights_from_middle:
        # Calculate offsets to center the original tensor
        offset = (new_size - input_size) // 2

        # Create a new tensor with the desired size
        result = torch.zeros(new_size, dtype=pretrained_weights.dtype, device=pretrained_weights.device)

        # Place the original tensor in the center
        result[offset : offset + input_size] = pretrained_weights

        # Tile the left and right sides
        for i in range(offset):
            result[offset - 1 - i] = pretrained_weights[input_size - 1 - (i % input_size)]
        for i in range(offset + input_size, new_size):
            result[i] = pretrained_weights[(i - offset) % input_size]
        return result.clone()


def _tile_2d(pretrained_weights: torch.Tensor, new_weights: torch.Tensor, mode: TileMode) -> torch.Tensor:
    assert pretrained_weights.dim() == 2, "Input tensor must be 2-dimensional"
    input_height, input_width = pretrained_weights.shape
    new_height, new_width = new_weights.shape
    assert new_height >= input_height, "Desired height must be greater than or equal to input height"
    assert new_width >= input_width, "Desired width must be greater than or equal to input width"

    if mode == TileMode.center_weights:
        height_offset = (new_height - input_height) // 2
        width_offset = (new_width - input_width) // 2
        new_weights[height_offset : height_offset + input_height, width_offset : width_offset + input_width] = pretrained_weights  # fmt: skip
        return new_weights.clone()
    elif mode == TileMode.tile_weights_from_edge:
        repeat_height = (new_height + input_height - 1) // input_height
        repeat_width = (new_width + input_width - 1) // input_width
        tiled_tensor = pretrained_weights.repeat(repeat_height, repeat_width)
        return tiled_tensor[:new_height, :new_width].clone()
    elif mode == TileMode.tile_weights_from_middle:
        # Calculate offsets to center the original tensor
        height_offset = (new_height - input_height) // 2
        width_offset = (new_width - input_width) // 2

        # Create a new tensor with the desired width and input height
        horizontal_tiled = torch.zeros(
            input_height, new_width, dtype=pretrained_weights.dtype, device=pretrained_weights.device
        )

        # Place the original tensor in the center horizontally
        horizontal_tiled[:, width_offset : width_offset + input_width] = pretrained_weights

        # Tile the left and right sides
        for i in range(width_offset):
            horizontal_tiled[:, i] = horizontal_tiled[
                :, width_offset + input_width - 1 - (width_offset - i - 1) % input_width
            ]
        for i in range(width_offset + input_width, new_width):
            horizontal_tiled[:, i] = horizontal_tiled[:, width_offset + (i - width_offset) % input_width]

        # Now tile vertically
        result = torch.zeros(new_height, new_width, dtype=pretrained_weights.dtype, device=pretrained_weights.device)
        result[height_offset : height_offset + input_height, :] = horizontal_tiled

        # Tile top
        for i in range(height_offset):
            row_to_copy = (input_height - 1) - (i % input_height)
            result[height_offset - 1 - i, :] = horizontal_tiled[row_to_copy, :]

        # Tile bottom
        for i in range(height_offset + input_height, new_height):
            row_to_copy = (i - height_offset) % input_height
            result[i, :] = horizontal_tiled[row_to_copy, :]
        return result.clone()


def tile_fused_qkv(
    pretrained_qkv_weight: torch.Tensor,
    new_qkv_weight: torch.Tensor,
    mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
):
    """
    Tile the weights of a fused pretrained QKV layer to a new, larger QKV dimension.

    Args:
        pretrained_qkv_weight (torch.Tensor): The original fused QKV layer
        new_qkv_weight (torch.Tensor): The new fused QKV layer with larger linear_dim
        mode (Union[str, TileMode]): The tiling mode to use
    Returns:
        torch.Tensor: The new fused QKV layer with tiled weights
    """
    # Split QKV, assume new_q, new_k, new_v are the same shape
    pretrained_q, pretrained_k, pretrained_v = pretrained_qkv_weight.chunk(3, dim=0)
    new_q, new_k, new_v = new_qkv_weight.chunk(3, dim=0)

    # Tile Q, K, V separately
    new_q = tile_weight(pretrained_q, new_q, mode=mode)
    new_k = tile_weight(pretrained_k, new_k, mode=mode)
    new_v = tile_weight(pretrained_v, new_v, mode=mode)

    # Concatenate tiled Q, K, V
    return torch.cat([new_q, new_k, new_v], dim=0)


def tile_fused_glu(
    pretrained_glu_weight: torch.Tensor,
    new_glu_weight: torch.Tensor,
    mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
):
    """
    Tile the weights of a fused pretrained GLU layer to a new, larger GLU dimension.

    Args:
        pretrained_glu_weight (torch.Tensor): The original fused GLU layer
        new_glu_weight (torch.Tensor): The new fused GLU layer with larger linear_dim
        mode (Union[str, TileMode]): The tiling mode to use
    Returns:
        torch.Tensor: The new fused GLU layer with tiled weights
    """
    # Split GLU, assume new_glu_wi, new_glu_wg are the same shape
    pretrained_glu_wi, pretrained_glu_wg = pretrained_glu_weight.chunk(2, dim=0)
    new_glu_wi, new_glu_wg = new_glu_weight.chunk(2, dim=0)

    # Tile GLU separately
    new_glu_wi = tile_weight(pretrained_glu_wi, new_glu_wi, mode=mode)
    new_glu_wg = tile_weight(pretrained_glu_wg, new_glu_wg, mode=mode)

    # Concatenate tiled GLU
    return torch.cat([new_glu_wi, new_glu_wg], dim=0)


def tile_fused_qkvff(
    pretrained_qkvff_weight: torch.Tensor,
    new_qkvff_weight: torch.Tensor,
    pretrained_attn_size: int,
    pretrained_mlp_size: int,
    new_attn_size: int,
    new_mlp_size: int,
    is_glu: bool = False,
    mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
):
    """
    Tile the weights of a fused pretrained QKVFF layer to a new, larger QKVFF dimension.

    Args:
        pretrained_qkvff_weight (torch.Tensor): The original fused QKVFF layer
        new_qkvff_weight (torch.Tensor): The new fused QKVFF layer with larger linear_dim
        pretrained_attn_size (int): The attention size of the pretrained fused QKVFF layer
        pretrained_mlp_size (int): The mlp size of the pretrained fused QKVFF layer
        new_attn_size (int): The attention size of the new fused QKVFF layer
        new_mlp_size (int): The mlp size of the new fused QKVFF layer
        is_glu (bool): Whether the QKVFF layer is a GLU layer
        mode (Union[str, TileMode]): The tiling mode to use
    Returns:
        torch.Tensor: The new fused QKVFF layer with tiled weights
    """
    # Split QKVFF
    pretrained_qkv, pretrained_ff = pretrained_qkvff_weight.split([pretrained_attn_size, pretrained_mlp_size], dim=0)
    new_qkv, new_ff = new_qkvff_weight.split([new_attn_size, new_mlp_size], dim=0)

    # Tile QKVFF separately
    new_qkv = tile_fused_qkv(pretrained_qkv, new_qkv, mode=mode)
    if is_glu:
        new_ff = tile_fused_glu(pretrained_ff, new_ff, mode=mode)
    else:
        new_ff = tile_weight(pretrained_ff, new_ff, mode=mode)

    # Concatenate tiled QKVFF
    return torch.cat([new_qkv, new_ff], dim=0)


class TileLinear(StrEnum):
    wqkv = "wqkv"
    glu = "glu"
    wqkvff = "wqkvff"
    default = "default"


def tile_linear(
    pretrained_linear: nn.Linear,
    new_linear: nn.Linear,
    linear_type: Union[str, TileLinear] = TileLinear.default,
    mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
    pretrained_attn_size: Optional[int] = None,
    pretrained_mlp_size: Optional[int] = None,
    new_attn_size: Optional[int] = None,
    new_mlp_size: Optional[int] = None,
    wqkvff_is_glu: Optional[bool] = None,
    bias_only: Optional[bool] = False,
):
    """
    Tile the weights of a linear layer to a new, larger linear dimension.

    Args:
        pretrained_linear (nn.Linear): The original linear layer
        new_linear (nn.Linear): The new linear layer with larger linear_dim
        linear_type (Union[str, TileLinear]): The type of linear layer to tile
        mode (Union[str, TileMode]): The tiling mode to use
        pretrained_attn_size (int): The attention size of the pretrained linear layer. Only used if linear_type is wqkvff.
        pretrained_mlp_size (int): The mlp size of the pretrained linear layer. Only used if linear_type is wqkvff.
        new_attn_size (int): The attention size of the new linear layer. Only used if linear_type is wqkvff.
        new_mlp_size (int): The mlp size of the new linear layer. Only used if linear_type is wqkvff.
        wqkvff_is_glu (bool): Whether the wqkvff layer is a GLU layer. Only used if linear_type is wqkvff.
        bias_only (bool): Whether to only tile the bias. Only used if tiling weight tied decoder.
    """
    if isinstance(linear_type, str):
        linear_type = TileLinear(linear_type)
    if isinstance(mode, str):
        mode = TileMode(mode)

    with torch.no_grad():
        if linear_type == TileLinear.wqkv:
            if not bias_only:
                new_linear.weight = nn.Parameter(
                    tile_fused_qkv(pretrained_linear.weight, new_linear.weight, mode=mode),
                    requires_grad=new_linear.weight.requires_grad,
                )
            if pretrained_linear.bias is not None:
                new_linear.bias = nn.Parameter(
                    tile_fused_qkv(pretrained_linear.bias, new_linear.bias, mode=mode),
                    requires_grad=new_linear.bias.requires_grad,
                )
        elif linear_type == TileLinear.glu:
            if not bias_only:
                new_linear.weight = nn.Parameter(
                    tile_fused_glu(pretrained_linear.weight, new_linear.weight, mode=mode),
                    requires_grad=new_linear.weight.requires_grad,
                )
            if pretrained_linear.bias is not None:
                new_linear.bias = nn.Parameter(
                    tile_fused_glu(pretrained_linear.bias, new_linear.bias, mode=mode),
                    requires_grad=new_linear.bias.requires_grad,
                )
        elif linear_type == TileLinear.wqkvff:
            if not bias_only:
                new_linear.weight = nn.Parameter(
                    tile_fused_qkvff(
                        pretrained_linear.weight,
                        new_linear.weight,
                        pretrained_attn_size,
                        pretrained_mlp_size,
                        new_attn_size,
                        new_mlp_size,
                        wqkvff_is_glu,
                        mode=mode,
                    ),
                    requires_grad=new_linear.weight.requires_grad,
                )
            if pretrained_linear.bias is not None:
                new_linear.bias = nn.Parameter(
                    tile_fused_qkvff(
                        pretrained_linear.bias,
                        new_linear.bias,
                        pretrained_attn_size,
                        pretrained_mlp_size,
                        new_attn_size,
                        new_mlp_size,
                        wqkvff_is_glu,
                        mode=mode,
                    ),
                    requires_grad=new_linear.bias.requires_grad,
                )
        else:
            if not bias_only:
                new_linear.weight = nn.Parameter(
                    tile_weight(pretrained_linear.weight, new_linear.weight, mode=mode),
                    requires_grad=new_linear.weight.requires_grad,
                )
            if pretrained_linear.bias is not None:
                new_linear.bias = nn.Parameter(
                    tile_weight(pretrained_linear.bias, new_linear.bias, mode=mode),
                    requires_grad=new_linear.bias.requires_grad,
                )


def tile_norm(
    pretrained_norm: Union[nn.LayerNorm, RMSNorm, nn.Identity],
    new_norm: Union[nn.LayerNorm, RMSNorm, nn.Identity],
    mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
):
    """
    Tile the weights of a pretrained norm layer to a new, larger layer norm dimension.

    Args:
        pretrained_norm (Union[nn.LayerNorm, RMSNorm, nn.Identity]): The original norm layer
        new_norm (Union[nn.LayerNorm, RMSNorm, nn.Identity]): The new norm layer with larger layer norm dimension
        mode (Union[str, TileMode]): The Phi-style weight tiling mode to use
    """
    if isinstance(pretrained_norm, nn.Identity):
        return
    if isinstance(mode, str):
        mode = TileMode(mode)

    with torch.no_grad():
        new_norm.weight.data = nn.Parameter(
            tile_weight(pretrained_norm.weight, new_norm.weight, mode=mode),
            requires_grad=new_norm.weight.requires_grad,
        )
        if hasattr(pretrained_norm, "bias") and pretrained_norm.bias is not None:
            new_norm.bias.data = nn.Parameter(
                tile_weight(pretrained_norm.bias, new_norm.bias, mode=mode),
                requires_grad=new_norm.bias.requires_grad,
            )


def tile_embedding(
    pretrained_embedding: nn.Embedding,
    new_embedding: nn.Embedding,
    mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
) -> nn.Embedding:
    """
    Tile the weights of an embedding layer to a new, larger embedding dimension.

    Args:
    pretrained_embedding (nn.Embedding): The original embedding layer
    new_embedding (nn.Embedding): The new embedding layer with larger embedding_dim
    tile_mode (Union[str, TileMode]): The Phi-style weight tiling mode to use

    Returns:
    nn.Embedding: The new embedding layer with tiled weights
    """
    with torch.no_grad():
        # Ensure vocabulary size remains the same
        if pretrained_embedding.num_embeddings != new_embedding.num_embeddings:
            raise ValueError("Vocabulary size (num_embeddings) must remain constant")

        # Ensure new embedding dimension is larger
        if new_embedding.embedding_dim <= pretrained_embedding.embedding_dim:
            raise ValueError("New embedding_dim must be larger than the old embedding_dim")

        # Tile the weights
        new_embedding.weight.data = nn.Parameter(
            tile_weight(pretrained_embedding.weight, new_embedding.weight, mode=mode),
            requires_grad=new_embedding.weight.requires_grad,
        )

        # Handle padding_idx if it exists
        if pretrained_embedding.padding_idx is not None:
            if new_embedding.padding_idx is None:
                new_embedding.padding_idx = pretrained_embedding.padding_idx
            else:
                assert new_embedding.padding_idx == pretrained_embedding.padding_idx, "padding_idx must remain the same"