osanseviero's picture
Upload PPO LunarLander-v2 trained agent
027a6f3
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff335501680>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff335501710>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff3355017a0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff335501830>",
"_build": "<function ActorCriticPolicy._build at 0x7ff3355018c0>",
"forward": "<function ActorCriticPolicy.forward at 0x7ff335501950>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff3355019e0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7ff335501a70>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff335501b00>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff335501b90>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff335501c20>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7ff335556450>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 16384,
"_total_timesteps": 1000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1651657579.867896,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAL0MrD7EgGo/tnBsP/exS79Dhuu+TMvKvgAAAAAAAAAA3enzPgpfhT+c/UE/8l4kv/kfqr6d4Xi+AAAAAAAAAADlbQw/T/NSPXbO47xsTha7MtkwvdTBi7wAAIA/AACAP0M9kr6AU68/3CkVv3a7Fb9CpLM+DlohvQAAAAAAAAAA6k4xP713djyTw20/XS0Mv7rDpL9xIa3AAACAPwAAAABQAwC/J+pWP8osK78m5Ie/jUPoPaVkJr4AAAAAAAAAAGYfaT7R8aA/qQ0WP4YI276d8YW+82sRvgAAAAAAAAAAQ9l7vgzxkT9mk1C/O/wev+Z3uD7Ggoo+AAAAAAAAAAAtrHc++rfMPw6ITz9J7/s9abBwvWkOrj0AAAAAAAAAAI1qgz3aiYE/2v6iPjembb/rCJq9ZWNVvgAAAAAAAAAAEkf3vrN3iD/Gl0e/59JUv8PG5T5Hjkk+AAAAAAAAAABgOWw+5XeCPyH5GT9BmDe/ZgsAv7ANd74AAAAAAAAAAKYwx70hdZg/7iA4v4ppW7+H3Vg9erAJPgAAAAAAAAAArQM5vpmDtz9m/eC+6vHCvgFmlT0tOiu9AAAAAAAAAACNUbe9hgdfP9q2pb4+S3u/bRFzPpZ4Tz4AAAAAAAAAAE3B3L3impk/WP0Kv2dyE7/n/tc9xFWTPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -15.384,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8z6O5kjncMCUhpRSlIwBbJRLX4wBdJRHQBGutnwob4t1fZQoaAZoCWgPQwh8fhghPHFgwJSGlFKUaBVLZmgWR0ARvp+tr9EUdX2UKGgGaAloD0MIjURoBBsTXMCUhpRSlGgVS2FoFkdAEkKJ2t+1B3V9lChoBmgJaA9DCORmuAGfFWbAlIaUUpRoFUtlaBZHQBJNb5dnkDJ1fZQoaAZoCWgPQwgpPGh2XTlqwJSGlFKUaBVLSmgWR0ASZNBWxQizdX2UKGgGaAloD0MIF2cMc4IMUcCUhpRSlGgVS0VoFkdAEozC1qnFYXV9lChoBmgJaA9DCM3Ji0xAm3PAlIaUUpRoFUtiaBZHQBL8kY4yXUp1fZQoaAZoCWgPQwjHDipxnVBzwJSGlFKUaBVLcWgWR0ATAAsCkoF3dX2UKGgGaAloD0MIyJqRQe4vb8CUhpRSlGgVSztoFkdAEysyzollb3V9lChoBmgJaA9DCFe1pKOcw2LAlIaUUpRoFUtPaBZHQBOAzk6tDD11fZQoaAZoCWgPQwjGMZI9QqNhwJSGlFKUaBVLd2gWR0ATq4oZydWidX2UKGgGaAloD0MIa2EW2jmZXsCUhpRSlGgVS35oFkdAE+yvcJtzjnV9lChoBmgJaA9DCBTLLa0GbnvAlIaUUpRoFUtZaBZHQBPx8lXzUZx1fZQoaAZoCWgPQwhaZhGKrVNpwJSGlFKUaBVLW2gWR0AUG9K28Zk1dX2UKGgGaAloD0MIHSJuTiUNTMCUhpRSlGgVS0hoFkdAFC6FuejEenV9lChoBmgJaA9DCCqr6XriYHfAlIaUUpRoFUuNaBZHQBSGFev6j351fZQoaAZoCWgPQwiqgHuef7l0wJSGlFKUaBVLVWgWR0AUqKZUkv9MdX2UKGgGaAloD0MItW/urx7oWcCUhpRSlGgVS39oFkdAFLP6sQumJnV9lChoBmgJaA9DCNRDNLqDlGPAlIaUUpRoFUtUaBZHQBTOwcHWz4V1fZQoaAZoCWgPQwj60tufCxJlwJSGlFKUaBVLbWgWR0AVNDiOvMbFdX2UKGgGaAloD0MIDcFxGTe+XMCUhpRSlGgVS0toFkdAFTBMzuWrwXV9lChoBmgJaA9DCIxK6gQ041PAlIaUUpRoFUthaBZHQBWcFY+0PYp1fZQoaAZoCWgPQwiIDoEjwVV1wJSGlFKUaBVLTmgWR0AV6/XXiBGydX2UKGgGaAloD0MI5Lop5bWtYsCUhpRSlGgVS1hoFkdAFhA3kxREW3V9lChoBmgJaA9DCLu5+Nseq2rAlIaUUpRoFUtTaBZHQBZfbfxc3VF1fZQoaAZoCWgPQwhevYqMDkRVwJSGlFKUaBVLgGgWR0AWwVqN6w+udX2UKGgGaAloD0MIlBYuqzCsZMCUhpRSlGgVS11oFkdAFu9du5z5oHV9lChoBmgJaA9DCOzdH+9VtVzAlIaUUpRoFUtKaBZHQBb/zSThYNl1fZQoaAZoCWgPQwgCKEaWTGRmwJSGlFKUaBVLY2gWR0AXMi0OVgQZdX2UKGgGaAloD0MIZDvfT40fNECUhpRSlGgVS1hoFkdAF0VdX1anrXV9lChoBmgJaA9DCOAu+3UnPm7AlIaUUpRoFUtyaBZHQBdhc3VCojx1fZQoaAZoCWgPQwi3skRnmTNewJSGlFKUaBVLWGgWR0AXdg7YChexdX2UKGgGaAloD0MIhlRRvMrxVcCUhpRSlGgVS2RoFkdAF/YywfQrtnV9lChoBmgJaA9DCMIU5dJ4EGbAlIaUUpRoFUtkaBZHQBhoJqqOtGN1fZQoaAZoCWgPQwhq96sA31RpwJSGlFKUaBVLZ2gWR0AYeqebutwKdX2UKGgGaAloD0MICFkWTHxRZsCUhpRSlGgVS0FoFkdAGLbxEv0yxnV9lChoBmgJaA9DCAgiizTxcmLAlIaUUpRoFUtcaBZHQBjJ7CzkZJl1fZQoaAZoCWgPQwi05VyKqxpdwJSGlFKUaBVLZmgWR0AY4qwyIpH7dX2UKGgGaAloD0MI95MxPszidcCUhpRSlGgVS2VoFkdAGSZZB9kSVXV9lChoBmgJaA9DCEXxKmubXlvAlIaUUpRoFUtRaBZHQBlYNZvDP4V1fZQoaAZoCWgPQwhx4xbzc/ZxwJSGlFKUaBVLS2gWR0AZbAtWdVebdX2UKGgGaAloD0MIAtaqXRMbXMCUhpRSlGgVS0toFkdAGZlPacqe9XV9lChoBmgJaA9DCEwceSCyZ2PAlIaUUpRoFUttaBZHQBmtVvMr3Cd1fZQoaAZoCWgPQwjF506wfxJ0wJSGlFKUaBVLU2gWR0AZ7zbvgFX8dX2UKGgGaAloD0MIqRWm77UibsCUhpRSlGgVS0NoFkdAGfGsmv4dqHV9lChoBmgJaA9DCPePhegQFGDAlIaUUpRoFUt4aBZHQBqQjyFwkxB1fZQoaAZoCWgPQwhwYd14dxpUwJSGlFKUaBVLVGgWR0Aa3sE7nxJ/dX2UKGgGaAloD0MIwCDp0yp6acCUhpRSlGgVS3toFkdAGuwPiDM/yHV9lChoBmgJaA9DCAPtDikGmVTAlIaUUpRoFUs9aBZHQBsrvCuU2UB1fZQoaAZoCWgPQwjHZ7J/njpfwJSGlFKUaBVLXmgWR0AbizeGfwqidX2UKGgGaAloD0MInZyhuOO+UsCUhpRSlGgVS0NoFkdAG6xEfDDTB3V9lChoBmgJaA9DCPFlogip1GLAlIaUUpRoFUtraBZHQBu1TisGPgh1fZQoaAZoCWgPQwhVFRqIZVRzwJSGlFKUaBVLY2gWR0Aby4Bmwqy4dX2UKGgGaAloD0MIjKIHPgaEbsCUhpRSlGgVS1BoFkdAG+ZqVQhwEXV9lChoBmgJaA9DCF3BNuKJRXrAlIaUUpRoFUtlaBZHQBv19fCyhSN1fZQoaAZoCWgPQwh5spsZ/XVbwJSGlFKUaBVLV2gWR0AcX4wh4dIYdX2UKGgGaAloD0MIB9LFphWfZsCUhpRSlGgVS3xoFkdAHPPhQ3xWk3V9lChoBmgJaA9DCGtI3GOpOXHAlIaUUpRoFUtXaBZHQB1LLQokRjB1fZQoaAZoCWgPQwg5C3vaoTBzwJSGlFKUaBVLcmgWR0AdejxkNFz/dX2UKGgGaAloD0MIpppZSwEYYcCUhpRSlGgVS0NoFkdAHasXBP9DQnV9lChoBmgJaA9DCHhi1ouhiVTAlIaUUpRoFUtRaBZHQB3H3Dej2zx1fZQoaAZoCWgPQwhLrIxGPslcwJSGlFKUaBVLWWgWR0AdyD5CWu5jdX2UKGgGaAloD0MIu+8YHrvxdcCUhpRSlGgVS3poFkdAHcePJaJQ+HV9lChoBmgJaA9DCL5PVaGB+V7AlIaUUpRoFUtCaBZHQB4TjvNNahZ1fZQoaAZoCWgPQwh97C5Q0sZiwJSGlFKUaBVLTWgWR0AeWxeLNwBHdX2UKGgGaAloD0MIEVSNXo2FYMCUhpRSlGgVS2xoFkdAHloBJZntfHV9lChoBmgJaA9DCLwhjQrc4XTAlIaUUpRoFUtXaBZHQB53l8w5/9Z1fZQoaAZoCWgPQwiMFTWYhqRawJSGlFKUaBVLXmgWR0AetGSZBsyjdX2UKGgGaAloD0MIDMwKRTrXbMCUhpRSlGgVS25oFkdAH07Gecx0uHV9lChoBmgJaA9DCJi9bDvt7nLAlIaUUpRoFUtNaBZHQB92kSElE7Z1fZQoaAZoCWgPQwjdtYR8UO5gwJSGlFKUaBVLa2gWR0Af1Rm9QGfPdX2UKGgGaAloD0MIzy10JQLKVMCUhpRSlGgVS0hoFkdAIA6jnFHavnV9lChoBmgJaA9DCHCX/brTZVrAlIaUUpRoFUtIaBZHQCA0ILPUrkN1fZQoaAZoCWgPQwiVKlH2lgNcwJSGlFKUaBVLWGgWR0AgR7ngYP5IdX2UKGgGaAloD0MIL/mf/N12W8CUhpRSlGgVS0toFkdAIGejM3ZPEnV9lChoBmgJaA9DCEq2upyS/WLAlIaUUpRoFUtCaBZHQCBzHIZIg/11fZQoaAZoCWgPQwjGvmTjQcBqwJSGlFKUaBVLaWgWR0AgemjTKDChdX2UKGgGaAloD0MIls0cktr+csCUhpRSlGgVS2JoFkdAIIHAymALA3V9lChoBmgJaA9DCNNp3Qa1LUrAlIaUUpRoFUtPaBZHQCCJq9Gqgh91fZQoaAZoCWgPQwh/pIgMKzxnwJSGlFKUaBVLd2gWR0AgnuuRs/IKdX2UKGgGaAloD0MI0UAsm/kbdcCUhpRSlGgVS2loFkdAIJ+l0o0ALnV9lChoBmgJaA9DCKcgPxs5DWfAlIaUUpRoFUtkaBZHQCDS0jTrmhd1fZQoaAZoCWgPQwjQZP88DcxTwJSGlFKUaBVLQmgWR0Ag1egL7XQMdX2UKGgGaAloD0MIFk1nJ4Ova8CUhpRSlGgVS0xoFkdAIOq1XvH933V9lChoBmgJaA9DCLCsNCmFtWDAlIaUUpRoFUtOaBZHQCE4n+hoM8Z1fZQoaAZoCWgPQwgMWkjAaLlkwJSGlFKUaBVLRWgWR0AhcuoP07KadX2UKGgGaAloD0MIml33ViSpaMCUhpRSlGgVS0NoFkdAIYnLidat93V9lChoBmgJaA9DCNcYdELof1PAlIaUUpRoFUs+aBZHQCGOLzf779B1fZQoaAZoCWgPQwi7e4Duy7VKwJSGlFKUaBVLRGgWR0AhoEs8PnSwdX2UKGgGaAloD0MIdJgvL8DedcCUhpRSlGgVS2BoFkdAIdPQ4S6DoXV9lChoBmgJaA9DCFga+FENJlnAlIaUUpRoFUtMaBZHQCHojnmq5sl1fZQoaAZoCWgPQwi5N79hon9GwJSGlFKUaBVLQ2gWR0AiD5AQg9vCdX2UKGgGaAloD0MI9x4uOe7aWsCUhpRSlGgVS0xoFkdAIh2LP2PDHnV9lChoBmgJaA9DCHb+7bKfTHnAlIaUUpRoFUtdaBZHQCIbr9l2/zt1fZQoaAZoCWgPQwg2Wg70UFN7wJSGlFKUaBVLgmgWR0AiQoQ4CIUKdX2UKGgGaAloD0MIr8+c9ansZsCUhpRSlGgVS1ZoFkdAIkx2jfvWpnV9lChoBmgJaA9DCFLt0/GYRVjAlIaUUpRoFUtlaBZHQCJUjFAE+xJ1fZQoaAZoCWgPQwg4SIjyBZtBQJSGlFKUaBVN6ANoFkdAImlQMx46fnV9lChoBmgJaA9DCIqsNZTaQWfAlIaUUpRoFUt5aBZHQCJ31e0G/vh1fZQoaAZoCWgPQwhmTMEaZ81RwJSGlFKUaBVLRGgWR0AijL7oB7u2dWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 4,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}