File size: 1,648 Bytes
204d5f4
 
 
 
 
5f31b46
204d5f4
5161138
204d5f4
 
 
 
 
 
 
5161138
204d5f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5161138
204d5f4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from typing import Dict, List, Any
from PIL import Image

import os
from fastai.learner import load_learner
from helpers import is_cat

def is_cat(x): return x[0].isupper()

class PreTrainedPipeline():
    def __init__(self, path=""):
        # IMPLEMENT_THIS
        # Preload all the elements you are going to need at inference.
        # For instance your model, processors, tokenizer that might be needed.
        # This function is only called once, so do all the heavy processing I/O here"""
        def is_cat(x): return x[0].isupper()
        self.model = load_learner(os.path.join(path, "model.pkl"))
        with open(os.path.join(path, "config.json")) as config:
            config = json.load(config)
        self.id2label = config["id2label"]

    def __call__(self, inputs: "Image.Image") -> List[Dict[str, Any]]:
        """
        Args:
            inputs (:obj:`PIL.Image`):
                The raw image representation as PIL.
                No transformation made whatsoever from the input. Make all necessary transformations here.
        Return:
            A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
                It is preferred if the returned list is in decreasing `score` order
        """
        def is_cat(x): return x[0].isupper()
        # IMPLEMENT_THIS
        # FastAI expects a np array, not a PIL Image.
        _, _, preds = self.model.predict(np.array(inputs))
        labels = [
            {"label": str(self.id2label["0"]), "score": preds[0]},
            {"label": str(self.id2label["1"]), "score": preds[1]},
        ]
        return labels