from packaging import version import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils.rnn import pad_sequence import fairseq from s3prl.upstream.interfaces import UpstreamBase SAMPLE_RATE = 16000 EXAMPLE_SEC = 5 class UpstreamExpert(UpstreamBase): def __init__(self, ckpt, **kwargs): super().__init__(**kwargs) assert version.parse(fairseq.__version__) > version.parse( "0.10.2" ), "Please install the fairseq master branch." model, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task( [ckpt] ) self.model = model[0] self.task = task if len(self.hooks) == 0: module_name = "self.model.encoder.layers" for module_id in range(len(eval(module_name))): self.add_hook( f"{module_name}[{module_id}]", lambda input, output: input[0].transpose(0, 1), ) self.add_hook("self.model.encoder", lambda input, output: output[0]) def forward(self, wavs): if self.task.cfg.normalize: wavs = [F.layer_norm(wav, wav.shape) for wav in wavs] device = wavs[0].device wav_lengths = torch.LongTensor([len(wav) for wav in wavs]).to(device) wav_padding_mask = ~torch.lt( torch.arange(max(wav_lengths)).unsqueeze(0).to(device), wav_lengths.unsqueeze(1), ) padded_wav = pad_sequence(wavs, batch_first=True) features, feat_padding_mask = self.model.extract_features( padded_wav, padding_mask=wav_padding_mask, mask=None, ) return { "default": features, }