train PPO model for LunarLander-v2
Browse files- PPO-LunarLander-v2.zip +3 -0
- PPO-LunarLander-v2/_stable_baselines3_version +1 -0
- PPO-LunarLander-v2/data +95 -0
- PPO-LunarLander-v2/policy.optimizer.pth +3 -0
- PPO-LunarLander-v2/policy.pth +3 -0
- PPO-LunarLander-v2/pytorch_variables.pth +3 -0
- PPO-LunarLander-v2/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
PPO-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03e1ed67487aad0d0d9007fbc30a108a3cead91af5c04670f63fec9edd868e93
|
3 |
+
size 147319
|
PPO-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
PPO-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f083d289820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f083d2898b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f083d289940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f083d2899d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f083d289a60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f083d289af0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f083d289b80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f083d289c10>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f083d289ca0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f083d289d30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f083d289dc0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f083d289e50>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f083d2848d0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673515813091921884,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMZiQr52IoY+oEYBvafKkr6STza9upmcPQAAAAAAAAAAqhdcvhnbhT7i5ig50ceSvt4HS72i6xi8AAAAAAAAAABmrFa8haSCuyKxIzw1OT69EgaNvHNZvr4AAIA/AACAP1AWar6SQrw8YTwJO28vmLl9+0++Eug0ugAAgD8AAIA/ADWrvPHoMzyl3AG7Rko/vqTo6Tx+uNQ8AAAAAAAAAADaQl2+eDnGPEZmAjuFa525jh5evhOUebkAAIA/AACAPxqKFb3hbKi61a7QN+3PxTJqBBI6C5fvtgAAgD8AAIA/a4aGvtaRCD+7cAA+O8Cevls9jLsDorU9AAAAAAAAAABN1TU+lBKZvFYoNDyKI7W6w08GvmC6j7sAAIA/AACAP63eOL4aBec+EEGaPBvkt77SxzG9fyUZvAAAAAAAAAAAs0rVPQ9kVz5hCkC+iJaCvhX9wL2ruig9AAAAAAAAAABGwzU+obkbP8HsN72xHsO+J43pPU7Lwb0AAAAAAAAAAGZaiDtcUyK6sEraN5ERiDIefeG6IS8CtwAAgD8AAIA/LbpNPsS3Uz613TC+wWx+vrLdYLxnqIq8AAAAAAAAAABzT/Y9hdcWP7ktyDzGE8G+QvrbPbp1lbwAAAAAAAAAAI3Ek73XGwm7pq+DO0Hshzyietm7y9xrPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVMRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRzzZzUy5cECUhpRSlIwBbJRL74wBdJRHQJflYUrTYul1fZQoaAZoCWgPQwht/l91ZNxyQJSGlFKUaBVL8mgWR0CX5s2h7E5ydX2UKGgGaAloD0MIoKnXLcKMcUCUhpRSlGgVS/xoFkdAl+cILgGbC3V9lChoBmgJaA9DCE4On3Sim25AlIaUUpRoFUvjaBZHQJfnepVCHAR1fZQoaAZoCWgPQwiU3GETme5tQJSGlFKUaBVL32gWR0CX54l1r6+GdX2UKGgGaAloD0MIWwcHe5PMcECUhpRSlGgVS9poFkdAl+eg44p+dHV9lChoBmgJaA9DCLQh/8wgtHBAlIaUUpRoFUvmaBZHQJfogKYzBRB1fZQoaAZoCWgPQwiNlgM91N1wQJSGlFKUaBVLz2gWR0CX6Ir5IpYtdX2UKGgGaAloD0MIa5p3nCI2b0CUhpRSlGgVS/hoFkdAl+iokVvddnV9lChoBmgJaA9DCHgq4J7nnUBAlIaUUpRoFUvjaBZHQJfpTlLeyiV1fZQoaAZoCWgPQwgXRQ98zKFxQJSGlFKUaBVNDAFoFkdAl+lbGR3eN3V9lChoBmgJaA9DCOSiWkSUJXFAlIaUUpRoFU03AWgWR0CX6k5qubI+dX2UKGgGaAloD0MIMQdBR2sgcUCUhpRSlGgVS+loFkdAl+pXZGrjpHV9lChoBmgJaA9DCK67eaqD/3JAlIaUUpRoFUvYaBZHQJfqiVLSNOx1fZQoaAZoCWgPQwj/snvy8BFxQJSGlFKUaBVL22gWR0CX6t/X5FgEdX2UKGgGaAloD0MIM8FwrmEScUCUhpRSlGgVS+loFkdAl+tAs9SuQ3V9lChoBmgJaA9DCBZRE32+xWxAlIaUUpRoFUvyaBZHQJftELApKBd1fZQoaAZoCWgPQwj6Dn7iwLlyQJSGlFKUaBVL3WgWR0CX7TQhfShKdX2UKGgGaAloD0MIFeC7zRuib0CUhpRSlGgVS/doFkdAl+3mjwhGIHV9lChoBmgJaA9DCK33G+14sXFAlIaUUpRoFU2DAWgWR0CX7lSl3yI6dX2UKGgGaAloD0MI0vwxrc0fbkCUhpRSlGgVS/NoFkdAl+7pjMFEA3V9lChoBmgJaA9DCFcJFofzrXFAlIaUUpRoFUv1aBZHQJfvAjkdWAB1fZQoaAZoCWgPQwjCFOXSOLpwQJSGlFKUaBVL3mgWR0CX70X1rZandX2UKGgGaAloD0MI5QrvctHhcUCUhpRSlGgVTT0BaBZHQJfvbFuNxVB1fZQoaAZoCWgPQwjVzjC1peRvQJSGlFKUaBVNNQFoFkdAl+/LLMcIaHV9lChoBmgJaA9DCMkh4uZUxW9AlIaUUpRoFUvXaBZHQJfwDPTodMl1fZQoaAZoCWgPQwjXa3pQEMdwQJSGlFKUaBVNLQFoFkdAl/CV7MPjGXV9lChoBmgJaA9DCEEo7+MoBXBAlIaUUpRoFUvpaBZHQJfxBYPoV211fZQoaAZoCWgPQwgmj6flxx5wQJSGlFKUaBVL+GgWR0CX8QkFwDNhdX2UKGgGaAloD0MISs6JPTR8cECUhpRSlGgVS+5oFkdAl/MlkMCtBHV9lChoBmgJaA9DCNZwkXu6kG1AlIaUUpRoFUvIaBZHQJfzUe1a4c51fZQoaAZoCWgPQwjVrglpTStwQJSGlFKUaBVL9WgWR0CX83mtyPuHdX2UKGgGaAloD0MI54wo7U2/cECUhpRSlGgVS+hoFkdAl/PMUZeiSXV9lChoBmgJaA9DCHLe/8dJ33FAlIaUUpRoFU14AWgWR0CX8+88cMmXdX2UKGgGaAloD0MISu6wicwKRECUhpRSlGgVS7loFkdAl/RJQtSQ5nV9lChoBmgJaA9DCHRcjexKkXFAlIaUUpRoFU1kAWgWR0CX9HZbpu/DdX2UKGgGaAloD0MI9yAE5MvLbkCUhpRSlGgVS99oFkdAl/SHTqjaf3V9lChoBmgJaA9DCKK0N/jC6W9AlIaUUpRoFUviaBZHQJf0hR0lqrR1fZQoaAZoCWgPQwi1wYnoFy1xQJSGlFKUaBVL2GgWR0CX9JVpsXSCdX2UKGgGaAloD0MIeLeyRGcyckCUhpRSlGgVS/doFkdAl/VSKm8/U3V9lChoBmgJaA9DCDP5ZpsbNnFAlIaUUpRoFUvxaBZHQJf1tGH58Bx1fZQoaAZoCWgPQwjds67R8n9wQJSGlFKUaBVL52gWR0CX9nFY+0PZdX2UKGgGaAloD0MIRPesa3TScECUhpRSlGgVS/xoFkdAl/b0OEug6HV9lChoBmgJaA9DCNhK6C6JmnBAlIaUUpRoFUvJaBZHQJf4HesPrfN1fZQoaAZoCWgPQwhc/67PHK9xQJSGlFKUaBVL4GgWR0CX+KFcY64ldX2UKGgGaAloD0MICvKzkWtCckCUhpRSlGgVS+poFkdAl/myf+S8rnV9lChoBmgJaA9DCP3AVZ5AW3NAlIaUUpRoFUvSaBZHQJf56EQGwA51fZQoaAZoCWgPQwglsg+y7KdyQJSGlFKUaBVL7WgWR0CX+f/TspocdX2UKGgGaAloD0MIOe0pOadXcECUhpRSlGgVS99oFkdAl/pTE74i5nV9lChoBmgJaA9DCK358ZcWnm5AlIaUUpRoFUvmaBZHQJf6d4Z/CqJ1fZQoaAZoCWgPQwiZnNoZZkNxQJSGlFKUaBVNGwFoFkdAl/rdxdY4hnV9lChoBmgJaA9DCPT91HhpY29AlIaUUpRoFUv0aBZHQJf7Af9xZMd1fZQoaAZoCWgPQwj2twTgn6xyQJSGlFKUaBVL52gWR0CX+5hCtzS1dX2UKGgGaAloD0MI3/lFCXpmcECUhpRSlGgVS+xoFkdAl/w55iVjZ3V9lChoBmgJaA9DCK5kx0agkXBAlIaUUpRoFUvVaBZHQJf8dJiAlOZ1fZQoaAZoCWgPQwizKOyiqBNwQJSGlFKUaBVL5GgWR0CX/WlQ/HHWdX2UKGgGaAloD0MImgmGc43CckCUhpRSlGgVTYMBaBZHQJf+kgwGnoB1fZQoaAZoCWgPQwg7cqQzMN9tQJSGlFKUaBVL5WgWR0CX/rwi7kGSdX2UKGgGaAloD0MIggGED2XycECUhpRSlGgVS+doFkdAl/9HQla8pXV9lChoBmgJaA9DCLUV+8uukHFAlIaUUpRoFUvNaBZHQJf/d0nw5Np1fZQoaAZoCWgPQwh7EALypcxvQJSGlFKUaBVL1GgWR0CX/8+HrQgLdX2UKGgGaAloD0MIwjHLnoRgbUCUhpRSlGgVS9doFkdAmAA8MRYigXV9lChoBmgJaA9DCA6jIHg8m3BAlIaUUpRoFUvwaBZHQJgAogTyrgh1fZQoaAZoCWgPQwjw+WGEcMFwQJSGlFKUaBVL1mgWR0CYALUBnzxxdX2UKGgGaAloD0MIJ0pCIq10cUCUhpRSlGgVS/5oFkdAmAKcYyfthXV9lChoBmgJaA9DCL/Rjhu+4HBAlIaUUpRoFU0xAWgWR0CYAtuh9LHudX2UKGgGaAloD0MIaykg7X/ncECUhpRSlGgVS9hoFkdAmAN2cnVoYnV9lChoBmgJaA9DCJBPyM5bKmVAlIaUUpRoFU3oA2gWR0CYA7ohIOH4dX2UKGgGaAloD0MIdGGkFzU/cECUhpRSlGgVTSMBaBZHQJgEkYXO4Xp1fZQoaAZoCWgPQwhMUwQ4fcpxQJSGlFKUaBVL+WgWR0CYBcmHP/rCdX2UKGgGaAloD0MIHcu76kG3cUCUhpRSlGgVTQIBaBZHQJgF41ivxH51fZQoaAZoCWgPQwjvIHam0G5vQJSGlFKUaBVLzmgWR0CYBinJDE3sdX2UKGgGaAloD0MIeQYN/ROFckCUhpRSlGgVS+BoFkdAmAY8j3VTaXV9lChoBmgJaA9DCG3H1F1ZwHBAlIaUUpRoFUv7aBZHQJgGbKoybhF1fZQoaAZoCWgPQwjeWbvtAtlyQJSGlFKUaBVL6GgWR0CYBzwKSgXedX2UKGgGaAloD0MIbYyd8NKvcECUhpRSlGgVS/xoFkdAmAog4ffXPXV9lChoBmgJaA9DCJ8DyxGyDXFAlIaUUpRoFUv0aBZHQJgKKGJvYOF1fZQoaAZoCWgPQwhDcFzGDdBwQJSGlFKUaBVL4WgWR0CYCoWUbDMvdX2UKGgGaAloD0MIp3nHKfp3ckCUhpRSlGgVS/loFkdAmAr9dqtYCHV9lChoBmgJaA9DCAcj9gkgYXFAlIaUUpRoFU1GAmgWR0CYC9lmOEM9dX2UKGgGaAloD0MIbJc2HJZLYECUhpRSlGgVTegDaBZHQJgMMfZElVt1fZQoaAZoCWgPQwil+WNaGxtxQJSGlFKUaBVL+2gWR0CYDF4RVZLadX2UKGgGaAloD0MIX7NcNjrIcECUhpRSlGgVS9VoFkdAmAyHz+WGAXV9lChoBmgJaA9DCKnYmNeR6G5AlIaUUpRoFUv1aBZHQJgNZOi35N51fZQoaAZoCWgPQwhu3jgpTGpwQJSGlFKUaBVNvgFoFkdAmA4kAcT8HnV9lChoBmgJaA9DCOF6FK7HyXFAlIaUUpRoFU0PAWgWR0CYDocjJMg2dX2UKGgGaAloD0MIQPomTQN7bkCUhpRSlGgVS+toFkdAmA6rXYlIE3V9lChoBmgJaA9DCHTtC+iFz21AlIaUUpRoFUvhaBZHQJgRL3ueBhB1fZQoaAZoCWgPQwjaA63AEPlwQJSGlFKUaBVL22gWR0CYEVvduYQbdX2UKGgGaAloD0MIX2HB/cCMckCUhpRSlGgVS95oFkdAmBHw/LTx5XV9lChoBmgJaA9DCKg65GZ4X3JAlIaUUpRoFU0EAWgWR0CYEkzvZyuIdX2UKGgGaAloD0MIqKym6wlcc0CUhpRSlGgVTZABaBZHQJgS3IYFaB91fZQoaAZoCWgPQwhKRWPtL8dwQJSGlFKUaBVL6mgWR0CYEy1xKg7HdX2UKGgGaAloD0MIVwqBXCJ/cECUhpRSlGgVS+JoFkdAmBOItthuwXV9lChoBmgJaA9DCNlcNc8RBHFAlIaUUpRoFUvuaBZHQJgTmFN+LFZ1fZQoaAZoCWgPQwhLWvENBVNyQJSGlFKUaBVL7WgWR0CYE7i3XqZ/dX2UKGgGaAloD0MII0p7gy9KcECUhpRSlGgVS+1oFkdAmBTLSmZVn3V9lChoBmgJaA9DCOAT61T5d3NAlIaUUpRoFUvJaBZHQJgU/mSyMUB1fZQoaAZoCWgPQwg/U69bxCVwQJSGlFKUaBVL3WgWR0CYFWwIdELIdX2UKGgGaAloD0MICcTr+kWTcECUhpRSlGgVS/JoFkdAmBWlMdtEX3VlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 310,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
PPO-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eba006c957ac02d272f53e72976fc91f4f1a82d40844297faf7f8963ce38d410
|
3 |
+
size 87929
|
PPO-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08fc562cb4ccc8daf92125fe634f5f6d69bf096a94e5cec023109042102931e7
|
3 |
+
size 43393
|
PPO-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 250.13 +/- 42.09
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f083d289820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f083d2898b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f083d289940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f083d2899d0>", "_build": "<function ActorCriticPolicy._build at 0x7f083d289a60>", "forward": "<function ActorCriticPolicy.forward at 0x7f083d289af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f083d289b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f083d289c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f083d289ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f083d289d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f083d289dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f083d289e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f083d2848d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673515813091921884, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMZiQr52IoY+oEYBvafKkr6STza9upmcPQAAAAAAAAAAqhdcvhnbhT7i5ig50ceSvt4HS72i6xi8AAAAAAAAAABmrFa8haSCuyKxIzw1OT69EgaNvHNZvr4AAIA/AACAP1AWar6SQrw8YTwJO28vmLl9+0++Eug0ugAAgD8AAIA/ADWrvPHoMzyl3AG7Rko/vqTo6Tx+uNQ8AAAAAAAAAADaQl2+eDnGPEZmAjuFa525jh5evhOUebkAAIA/AACAPxqKFb3hbKi61a7QN+3PxTJqBBI6C5fvtgAAgD8AAIA/a4aGvtaRCD+7cAA+O8Cevls9jLsDorU9AAAAAAAAAABN1TU+lBKZvFYoNDyKI7W6w08GvmC6j7sAAIA/AACAP63eOL4aBec+EEGaPBvkt77SxzG9fyUZvAAAAAAAAAAAs0rVPQ9kVz5hCkC+iJaCvhX9wL2ruig9AAAAAAAAAABGwzU+obkbP8HsN72xHsO+J43pPU7Lwb0AAAAAAAAAAGZaiDtcUyK6sEraN5ERiDIefeG6IS8CtwAAgD8AAIA/LbpNPsS3Uz613TC+wWx+vrLdYLxnqIq8AAAAAAAAAABzT/Y9hdcWP7ktyDzGE8G+QvrbPbp1lbwAAAAAAAAAAI3Ek73XGwm7pq+DO0Hshzyietm7y9xrPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRzzZzUy5cECUhpRSlIwBbJRL74wBdJRHQJflYUrTYul1fZQoaAZoCWgPQwht/l91ZNxyQJSGlFKUaBVL8mgWR0CX5s2h7E5ydX2UKGgGaAloD0MIoKnXLcKMcUCUhpRSlGgVS/xoFkdAl+cILgGbC3V9lChoBmgJaA9DCE4On3Sim25AlIaUUpRoFUvjaBZHQJfnepVCHAR1fZQoaAZoCWgPQwiU3GETme5tQJSGlFKUaBVL32gWR0CX54l1r6+GdX2UKGgGaAloD0MIWwcHe5PMcECUhpRSlGgVS9poFkdAl+eg44p+dHV9lChoBmgJaA9DCLQh/8wgtHBAlIaUUpRoFUvmaBZHQJfogKYzBRB1fZQoaAZoCWgPQwiNlgM91N1wQJSGlFKUaBVLz2gWR0CX6Ir5IpYtdX2UKGgGaAloD0MIa5p3nCI2b0CUhpRSlGgVS/hoFkdAl+iokVvddnV9lChoBmgJaA9DCHgq4J7nnUBAlIaUUpRoFUvjaBZHQJfpTlLeyiV1fZQoaAZoCWgPQwgXRQ98zKFxQJSGlFKUaBVNDAFoFkdAl+lbGR3eN3V9lChoBmgJaA9DCOSiWkSUJXFAlIaUUpRoFU03AWgWR0CX6k5qubI+dX2UKGgGaAloD0MIMQdBR2sgcUCUhpRSlGgVS+loFkdAl+pXZGrjpHV9lChoBmgJaA9DCK67eaqD/3JAlIaUUpRoFUvYaBZHQJfqiVLSNOx1fZQoaAZoCWgPQwj/snvy8BFxQJSGlFKUaBVL22gWR0CX6t/X5FgEdX2UKGgGaAloD0MIM8FwrmEScUCUhpRSlGgVS+loFkdAl+tAs9SuQ3V9lChoBmgJaA9DCBZRE32+xWxAlIaUUpRoFUvyaBZHQJftELApKBd1fZQoaAZoCWgPQwj6Dn7iwLlyQJSGlFKUaBVL3WgWR0CX7TQhfShKdX2UKGgGaAloD0MIFeC7zRuib0CUhpRSlGgVS/doFkdAl+3mjwhGIHV9lChoBmgJaA9DCK33G+14sXFAlIaUUpRoFU2DAWgWR0CX7lSl3yI6dX2UKGgGaAloD0MI0vwxrc0fbkCUhpRSlGgVS/NoFkdAl+7pjMFEA3V9lChoBmgJaA9DCFcJFofzrXFAlIaUUpRoFUv1aBZHQJfvAjkdWAB1fZQoaAZoCWgPQwjCFOXSOLpwQJSGlFKUaBVL3mgWR0CX70X1rZandX2UKGgGaAloD0MI5QrvctHhcUCUhpRSlGgVTT0BaBZHQJfvbFuNxVB1fZQoaAZoCWgPQwjVzjC1peRvQJSGlFKUaBVNNQFoFkdAl+/LLMcIaHV9lChoBmgJaA9DCMkh4uZUxW9AlIaUUpRoFUvXaBZHQJfwDPTodMl1fZQoaAZoCWgPQwjXa3pQEMdwQJSGlFKUaBVNLQFoFkdAl/CV7MPjGXV9lChoBmgJaA9DCEEo7+MoBXBAlIaUUpRoFUvpaBZHQJfxBYPoV211fZQoaAZoCWgPQwgmj6flxx5wQJSGlFKUaBVL+GgWR0CX8QkFwDNhdX2UKGgGaAloD0MISs6JPTR8cECUhpRSlGgVS+5oFkdAl/MlkMCtBHV9lChoBmgJaA9DCNZwkXu6kG1AlIaUUpRoFUvIaBZHQJfzUe1a4c51fZQoaAZoCWgPQwjVrglpTStwQJSGlFKUaBVL9WgWR0CX83mtyPuHdX2UKGgGaAloD0MI54wo7U2/cECUhpRSlGgVS+hoFkdAl/PMUZeiSXV9lChoBmgJaA9DCHLe/8dJ33FAlIaUUpRoFU14AWgWR0CX8+88cMmXdX2UKGgGaAloD0MISu6wicwKRECUhpRSlGgVS7loFkdAl/RJQtSQ5nV9lChoBmgJaA9DCHRcjexKkXFAlIaUUpRoFU1kAWgWR0CX9HZbpu/DdX2UKGgGaAloD0MI9yAE5MvLbkCUhpRSlGgVS99oFkdAl/SHTqjaf3V9lChoBmgJaA9DCKK0N/jC6W9AlIaUUpRoFUviaBZHQJf0hR0lqrR1fZQoaAZoCWgPQwi1wYnoFy1xQJSGlFKUaBVL2GgWR0CX9JVpsXSCdX2UKGgGaAloD0MIeLeyRGcyckCUhpRSlGgVS/doFkdAl/VSKm8/U3V9lChoBmgJaA9DCDP5ZpsbNnFAlIaUUpRoFUvxaBZHQJf1tGH58Bx1fZQoaAZoCWgPQwjds67R8n9wQJSGlFKUaBVL52gWR0CX9nFY+0PZdX2UKGgGaAloD0MIRPesa3TScECUhpRSlGgVS/xoFkdAl/b0OEug6HV9lChoBmgJaA9DCNhK6C6JmnBAlIaUUpRoFUvJaBZHQJf4HesPrfN1fZQoaAZoCWgPQwhc/67PHK9xQJSGlFKUaBVL4GgWR0CX+KFcY64ldX2UKGgGaAloD0MICvKzkWtCckCUhpRSlGgVS+poFkdAl/myf+S8rnV9lChoBmgJaA9DCP3AVZ5AW3NAlIaUUpRoFUvSaBZHQJf56EQGwA51fZQoaAZoCWgPQwglsg+y7KdyQJSGlFKUaBVL7WgWR0CX+f/TspocdX2UKGgGaAloD0MIOe0pOadXcECUhpRSlGgVS99oFkdAl/pTE74i5nV9lChoBmgJaA9DCK358ZcWnm5AlIaUUpRoFUvmaBZHQJf6d4Z/CqJ1fZQoaAZoCWgPQwiZnNoZZkNxQJSGlFKUaBVNGwFoFkdAl/rdxdY4hnV9lChoBmgJaA9DCPT91HhpY29AlIaUUpRoFUv0aBZHQJf7Af9xZMd1fZQoaAZoCWgPQwj2twTgn6xyQJSGlFKUaBVL52gWR0CX+5hCtzS1dX2UKGgGaAloD0MI3/lFCXpmcECUhpRSlGgVS+xoFkdAl/w55iVjZ3V9lChoBmgJaA9DCK5kx0agkXBAlIaUUpRoFUvVaBZHQJf8dJiAlOZ1fZQoaAZoCWgPQwizKOyiqBNwQJSGlFKUaBVL5GgWR0CX/WlQ/HHWdX2UKGgGaAloD0MImgmGc43CckCUhpRSlGgVTYMBaBZHQJf+kgwGnoB1fZQoaAZoCWgPQwg7cqQzMN9tQJSGlFKUaBVL5WgWR0CX/rwi7kGSdX2UKGgGaAloD0MIggGED2XycECUhpRSlGgVS+doFkdAl/9HQla8pXV9lChoBmgJaA9DCLUV+8uukHFAlIaUUpRoFUvNaBZHQJf/d0nw5Np1fZQoaAZoCWgPQwh7EALypcxvQJSGlFKUaBVL1GgWR0CX/8+HrQgLdX2UKGgGaAloD0MIwjHLnoRgbUCUhpRSlGgVS9doFkdAmAA8MRYigXV9lChoBmgJaA9DCA6jIHg8m3BAlIaUUpRoFUvwaBZHQJgAogTyrgh1fZQoaAZoCWgPQwjw+WGEcMFwQJSGlFKUaBVL1mgWR0CYALUBnzxxdX2UKGgGaAloD0MIJ0pCIq10cUCUhpRSlGgVS/5oFkdAmAKcYyfthXV9lChoBmgJaA9DCL/Rjhu+4HBAlIaUUpRoFU0xAWgWR0CYAtuh9LHudX2UKGgGaAloD0MIaykg7X/ncECUhpRSlGgVS9hoFkdAmAN2cnVoYnV9lChoBmgJaA9DCJBPyM5bKmVAlIaUUpRoFU3oA2gWR0CYA7ohIOH4dX2UKGgGaAloD0MIdGGkFzU/cECUhpRSlGgVTSMBaBZHQJgEkYXO4Xp1fZQoaAZoCWgPQwhMUwQ4fcpxQJSGlFKUaBVL+WgWR0CYBcmHP/rCdX2UKGgGaAloD0MIHcu76kG3cUCUhpRSlGgVTQIBaBZHQJgF41ivxH51fZQoaAZoCWgPQwjvIHam0G5vQJSGlFKUaBVLzmgWR0CYBinJDE3sdX2UKGgGaAloD0MIeQYN/ROFckCUhpRSlGgVS+BoFkdAmAY8j3VTaXV9lChoBmgJaA9DCG3H1F1ZwHBAlIaUUpRoFUv7aBZHQJgGbKoybhF1fZQoaAZoCWgPQwjeWbvtAtlyQJSGlFKUaBVL6GgWR0CYBzwKSgXedX2UKGgGaAloD0MIbYyd8NKvcECUhpRSlGgVS/xoFkdAmAog4ffXPXV9lChoBmgJaA9DCJ8DyxGyDXFAlIaUUpRoFUv0aBZHQJgKKGJvYOF1fZQoaAZoCWgPQwhDcFzGDdBwQJSGlFKUaBVL4WgWR0CYCoWUbDMvdX2UKGgGaAloD0MIp3nHKfp3ckCUhpRSlGgVS/loFkdAmAr9dqtYCHV9lChoBmgJaA9DCAcj9gkgYXFAlIaUUpRoFU1GAmgWR0CYC9lmOEM9dX2UKGgGaAloD0MIbJc2HJZLYECUhpRSlGgVTegDaBZHQJgMMfZElVt1fZQoaAZoCWgPQwil+WNaGxtxQJSGlFKUaBVL+2gWR0CYDF4RVZLadX2UKGgGaAloD0MIX7NcNjrIcECUhpRSlGgVS9VoFkdAmAyHz+WGAXV9lChoBmgJaA9DCKnYmNeR6G5AlIaUUpRoFUv1aBZHQJgNZOi35N51fZQoaAZoCWgPQwhu3jgpTGpwQJSGlFKUaBVNvgFoFkdAmA4kAcT8HnV9lChoBmgJaA9DCOF6FK7HyXFAlIaUUpRoFU0PAWgWR0CYDocjJMg2dX2UKGgGaAloD0MIQPomTQN7bkCUhpRSlGgVS+toFkdAmA6rXYlIE3V9lChoBmgJaA9DCHTtC+iFz21AlIaUUpRoFUvhaBZHQJgRL3ueBhB1fZQoaAZoCWgPQwjaA63AEPlwQJSGlFKUaBVL22gWR0CYEVvduYQbdX2UKGgGaAloD0MIX2HB/cCMckCUhpRSlGgVS95oFkdAmBHw/LTx5XV9lChoBmgJaA9DCKg65GZ4X3JAlIaUUpRoFU0EAWgWR0CYEkzvZyuIdX2UKGgGaAloD0MIqKym6wlcc0CUhpRSlGgVTZABaBZHQJgS3IYFaB91fZQoaAZoCWgPQwhKRWPtL8dwQJSGlFKUaBVL6mgWR0CYEy1xKg7HdX2UKGgGaAloD0MIVwqBXCJ/cECUhpRSlGgVS+JoFkdAmBOItthuwXV9lChoBmgJaA9DCNlcNc8RBHFAlIaUUpRoFUvuaBZHQJgTmFN+LFZ1fZQoaAZoCWgPQwhLWvENBVNyQJSGlFKUaBVL7WgWR0CYE7i3XqZ/dX2UKGgGaAloD0MII0p7gy9KcECUhpRSlGgVS+1oFkdAmBTLSmZVn3V9lChoBmgJaA9DCOAT61T5d3NAlIaUUpRoFUvJaBZHQJgU/mSyMUB1fZQoaAZoCWgPQwg/U69bxCVwQJSGlFKUaBVL3WgWR0CYFWwIdELIdX2UKGgGaAloD0MICcTr+kWTcECUhpRSlGgVS/JoFkdAmBWlMdtEX3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (231 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 250.13381681323193, "std_reward": 42.089300911422235, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-12T10:16:41.246432"}
|