File size: 11,099 Bytes
48451f4
 
 
 
 
 
 
 
 
 
 
 
 
5b0f246
7cc2e4f
48451f4
0c5a746
 
 
 
 
 
 
 
 
48451f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c5a746
 
 
48451f4
1684e0b
0c5a746
48451f4
 
0c5a746
 
48451f4
 
 
0c5a746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48451f4
 
 
 
7cc2e4f
48451f4
1684e0b
48451f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: mlcovid19-classifier
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mlcovid19-classifier

This model is a fine-tuned version of [oscarwu/mlcovid19-classifier](https://huggingface.co/oscarwu/mlcovid19-classifier) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2879
- F1 Macro: 0.7978
- F1 Misinformation: 0.9347
- F1 Factual: 0.9423
- F1 Other: 0.5166
- Prec Macro: 0.8156
- Prec Misinformation: 0.9277
- Prec Factual: 0.9345
- Prec Other: 0.5846

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 4096
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2607
- num_epochs: 400

### Training results

| Training Loss | Epoch  | Step | Validation Loss | F1 Macro | F1 Misinformation | F1 Factual | F1 Other | Prec Macro | Prec Misinformation | Prec Factual | Prec Other |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:----------:|:--------:|:----------:|:-------------------:|:------------:|:----------:|
| 0.4535        | 1.98   | 10   | 0.4122          | 0.6809   | 0.8906            | 0.8993     | 0.2529   | 0.7749     | 0.8433              | 0.9169       | 0.5646     |
| 0.4445        | 3.98   | 20   | 0.4056          | 0.6844   | 0.8918            | 0.9004     | 0.2611   | 0.7706     | 0.8461              | 0.9171       | 0.5487     |
| 0.4362        | 5.98   | 30   | 0.3966          | 0.6870   | 0.8930            | 0.9020     | 0.2658   | 0.7672     | 0.8490              | 0.9171       | 0.5356     |
| 0.4229        | 7.98   | 40   | 0.3864          | 0.6885   | 0.8955            | 0.9055     | 0.2645   | 0.7652     | 0.8531              | 0.9179       | 0.5246     |
| 0.4134        | 9.98   | 50   | 0.3774          | 0.6889   | 0.8983            | 0.9091     | 0.2594   | 0.7697     | 0.8573              | 0.9173       | 0.5345     |
| 0.4004        | 11.98  | 60   | 0.3682          | 0.6907   | 0.8996            | 0.9111     | 0.2616   | 0.7763     | 0.8605              | 0.9148       | 0.5536     |
| 0.3893        | 13.98  | 70   | 0.3583          | 0.6960   | 0.9014            | 0.9124     | 0.2740   | 0.7853     | 0.8629              | 0.9152       | 0.5778     |
| 0.3853        | 15.98  | 80   | 0.3483          | 0.7036   | 0.9031            | 0.9157     | 0.2920   | 0.7749     | 0.8683              | 0.9172       | 0.5390     |
| 0.369         | 17.98  | 90   | 0.3399          | 0.7011   | 0.9037            | 0.9167     | 0.2828   | 0.7775     | 0.8690              | 0.9159       | 0.5476     |
| 0.36          | 19.98  | 100  | 0.3312          | 0.7102   | 0.9056            | 0.9194     | 0.3055   | 0.7836     | 0.8733              | 0.9167       | 0.5609     |
| 0.3445        | 21.98  | 110  | 0.3237          | 0.7116   | 0.9065            | 0.9204     | 0.3078   | 0.7860     | 0.8749              | 0.9165       | 0.5667     |
| 0.3406        | 23.98  | 120  | 0.3181          | 0.7058   | 0.9068            | 0.9212     | 0.2893   | 0.7880     | 0.8740              | 0.9162       | 0.5738     |
| 0.3286        | 25.98  | 130  | 0.3094          | 0.7183   | 0.9099            | 0.9250     | 0.32     | 0.7932     | 0.8782              | 0.9216       | 0.5797     |
| 0.3213        | 27.98  | 140  | 0.3049          | 0.7187   | 0.9111            | 0.9254     | 0.3196   | 0.7957     | 0.8800              | 0.9204       | 0.5867     |
| 0.3111        | 29.98  | 150  | 0.3017          | 0.7219   | 0.9129            | 0.9264     | 0.3263   | 0.7983     | 0.8843              | 0.9178       | 0.5927     |
| 0.3087        | 31.98  | 160  | 0.2970          | 0.7231   | 0.9132            | 0.9276     | 0.3287   | 0.7977     | 0.8850              | 0.9188       | 0.5893     |
| 0.2992        | 33.98  | 170  | 0.2926          | 0.7243   | 0.9141            | 0.9293     | 0.3293   | 0.8003     | 0.8839              | 0.9235       | 0.5935     |
| 0.2924        | 35.98  | 180  | 0.2892          | 0.7312   | 0.9150            | 0.9303     | 0.3482   | 0.7971     | 0.8889              | 0.9218       | 0.5806     |
| 0.2878        | 37.98  | 190  | 0.2870          | 0.7356   | 0.9173            | 0.9324     | 0.3571   | 0.8027     | 0.8906              | 0.9246       | 0.5929     |
| 0.2811        | 39.98  | 200  | 0.2844          | 0.7439   | 0.9188            | 0.9328     | 0.3801   | 0.8109     | 0.8954              | 0.9213       | 0.6161     |
| 0.2751        | 41.98  | 210  | 0.2816          | 0.7500   | 0.9197            | 0.9340     | 0.3963   | 0.8060     | 0.8973              | 0.9250       | 0.5956     |
| 0.2683        | 43.98  | 220  | 0.2798          | 0.7517   | 0.9210            | 0.9339     | 0.4000   | 0.8068     | 0.8976              | 0.9272       | 0.5956     |
| 0.2643        | 45.98  | 230  | 0.2766          | 0.7544   | 0.9221            | 0.9349     | 0.4062   | 0.8064     | 0.8990              | 0.9290       | 0.5910     |
| 0.2619        | 47.98  | 240  | 0.2736          | 0.7579   | 0.9227            | 0.9356     | 0.4155   | 0.8085     | 0.9002              | 0.9298       | 0.5954     |
| 0.2539        | 49.98  | 250  | 0.2733          | 0.7567   | 0.9231            | 0.9357     | 0.4111   | 0.8060     | 0.9006              | 0.9302       | 0.5872     |
| 0.2496        | 51.98  | 260  | 0.2713          | 0.7600   | 0.9235            | 0.9360     | 0.4206   | 0.8070     | 0.9009              | 0.9320       | 0.5881     |
| 0.2455        | 53.98  | 270  | 0.2697          | 0.7575   | 0.9231            | 0.9356     | 0.4139   | 0.8052     | 0.9009              | 0.9304       | 0.5844     |
| 0.2371        | 55.98  | 280  | 0.2686          | 0.7652   | 0.9239            | 0.9356     | 0.4360   | 0.8058     | 0.9058              | 0.9283       | 0.5833     |
| 0.2316        | 57.98  | 290  | 0.2686          | 0.7664   | 0.9243            | 0.9361     | 0.4389   | 0.8037     | 0.9073              | 0.9288       | 0.5749     |
| 0.2258        | 59.98  | 300  | 0.2664          | 0.7680   | 0.9247            | 0.9360     | 0.4431   | 0.8018     | 0.9095              | 0.9279       | 0.5680     |
| 0.2207        | 61.98  | 310  | 0.2663          | 0.7736   | 0.9262            | 0.9373     | 0.4574   | 0.8015     | 0.9145              | 0.9276       | 0.5625     |
| 0.2167        | 63.98  | 320  | 0.2643          | 0.7715   | 0.9268            | 0.9380     | 0.4498   | 0.8003     | 0.9127              | 0.9312       | 0.5571     |
| 0.2131        | 65.98  | 330  | 0.2627          | 0.7753   | 0.9287            | 0.9398     | 0.4573   | 0.8064     | 0.9123              | 0.9356       | 0.5714     |
| 0.2075        | 67.98  | 340  | 0.2644          | 0.7760   | 0.9290            | 0.9397     | 0.4593   | 0.8056     | 0.9136              | 0.9349       | 0.5682     |
| 0.2049        | 69.98  | 350  | 0.2648          | 0.7768   | 0.9290            | 0.9390     | 0.4623   | 0.8050     | 0.9174              | 0.9292       | 0.5685     |
| 0.2016        | 71.98  | 360  | 0.2631          | 0.7771   | 0.9295            | 0.9394     | 0.4623   | 0.8055     | 0.9165              | 0.9316       | 0.5685     |
| 0.1979        | 73.98  | 370  | 0.2644          | 0.7793   | 0.9305            | 0.9397     | 0.4677   | 0.8041     | 0.9208              | 0.9295       | 0.5620     |
| 0.1939        | 75.98  | 380  | 0.2671          | 0.7909   | 0.9312            | 0.9392     | 0.5023   | 0.8099     | 0.9272              | 0.9256       | 0.5771     |
| 0.1932        | 77.98  | 390  | 0.2648          | 0.7927   | 0.9325            | 0.9422     | 0.5035   | 0.8104     | 0.9242              | 0.9361       | 0.5709     |
| 0.1856        | 79.98  | 400  | 0.2615          | 0.7922   | 0.9331            | 0.9431     | 0.5004   | 0.8111     | 0.9235              | 0.9379       | 0.5719     |
| 0.1837        | 81.98  | 410  | 0.2624          | 0.7898   | 0.9328            | 0.9447     | 0.4920   | 0.8141     | 0.9183              | 0.9432       | 0.5808     |
| 0.1781        | 83.98  | 420  | 0.2660          | 0.7988   | 0.9334            | 0.9432     | 0.5196   | 0.8128     | 0.9263              | 0.9388       | 0.5733     |
| 0.172         | 85.98  | 430  | 0.2642          | 0.7909   | 0.9335            | 0.9428     | 0.4964   | 0.8139     | 0.9234              | 0.9353       | 0.5829     |
| 0.172         | 87.98  | 440  | 0.2695          | 0.7880   | 0.9321            | 0.9430     | 0.4889   | 0.8121     | 0.9172              | 0.9422       | 0.5771     |
| 0.1656        | 89.98  | 450  | 0.2671          | 0.7928   | 0.9337            | 0.9436     | 0.5012   | 0.8145     | 0.9212              | 0.9411       | 0.5811     |
| 0.163         | 91.98  | 460  | 0.2693          | 0.7949   | 0.9331            | 0.9429     | 0.5088   | 0.8111     | 0.9232              | 0.9408       | 0.5692     |
| 0.1555        | 93.98  | 470  | 0.2696          | 0.7967   | 0.9332            | 0.9431     | 0.5138   | 0.8142     | 0.9203              | 0.9449       | 0.5776     |
| 0.1513        | 95.98  | 480  | 0.2710          | 0.7985   | 0.9340            | 0.9443     | 0.5172   | 0.8156     | 0.9220              | 0.9450       | 0.5798     |
| 0.1478        | 97.98  | 490  | 0.2722          | 0.7991   | 0.9342            | 0.9442     | 0.5189   | 0.8138     | 0.9243              | 0.9436       | 0.5736     |
| 0.1435        | 99.98  | 500  | 0.2725          | 0.7981   | 0.9343            | 0.9432     | 0.5166   | 0.8124     | 0.9248              | 0.9424       | 0.57       |
| 0.1409        | 101.98 | 510  | 0.2754          | 0.7994   | 0.9345            | 0.9432     | 0.5206   | 0.8161     | 0.9231              | 0.9433       | 0.5819     |
| 0.1384        | 103.98 | 520  | 0.2817          | 0.7991   | 0.9347            | 0.9441     | 0.5184   | 0.8166     | 0.9233              | 0.9436       | 0.5828     |
| 0.1333        | 105.98 | 530  | 0.2833          | 0.7934   | 0.9351            | 0.9434     | 0.5016   | 0.8178     | 0.9232              | 0.9380       | 0.5921     |
| 0.1267        | 107.98 | 540  | 0.2929          | 0.7884   | 0.9337            | 0.9429     | 0.4886   | 0.8167     | 0.9198              | 0.9377       | 0.5925     |
| 0.1234        | 109.98 | 550  | 0.2879          | 0.7978   | 0.9347            | 0.9423     | 0.5166   | 0.8156     | 0.9277              | 0.9345       | 0.5846     |


### Framework versions

- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1