ospeek commited on
Commit
9d0d462
·
1 Parent(s): 2e3574a

Upload trained lunar lander

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 257.57 +/- 26.00
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 275.53 +/- 17.32
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc1ba81b6d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc1ba81b760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc1ba81b7f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc1ba81b880>", "_build": "<function ActorCriticPolicy._build at 0x7fc1ba81b910>", "forward": "<function ActorCriticPolicy.forward at 0x7fc1ba81b9a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc1ba81ba30>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc1ba81bac0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc1ba81bb50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc1ba81bbe0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc1ba81bc70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc1ba81dc00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673083529309179132, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL29ubm8vLnZlbnYvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL29ubm8vLnZlbnYvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNPMLzhxJi6YNiBO8FQ7TiGO5k62pkZugAAgD8AAIA/AKMcvXuamboKsAm5BjRntozRIjnauSA4AACAPwAAgD8zJD29rel6Ps1TMbxmh12+omMbvQsZV7wAAAAAAAAAAJoWJj0UqoG6Bl5eOVWCqbVA4yG7eyyhtAAAgD8AAIA/AAasvMNRYrpWBCC39RoRsnXlrbm2Yzw2AACAPwAAgD/Nzew8FLCluiXR2DqNDrI1KqnMOTBK+bkAAIA/AACAP2Z+Hz0pWAS6NlFque+bB7Y45WY7SraMOAAAgD8AAIA/M45zva7FurrtHdQ4oxX9td/JETkD9++3AACAPwAAgD8ar2G9LqQvP9okLj2PTY++A61BvdWCjTwAAAAAAAAAAE1hND2uMZe6phrtuiK64rUGKt05zAsJOgAAgD8AAIA/s7pFPfbcWbqzi1C6L5pNtVOdmLpedHU5AACAPwAAgD+aSd86rnGHuroPhzXtIZ8wqdM0uTUAtLQAAIA/AACAP6aJw70DhgU9gC19Pm+TDr7+yrc8O93ZuwAAAAAAAAAAmvuzvMONL7rX7Cy4Btljs/FjFDvONkw3AACAPwAAgD8Akbu818M5uYjLGjts40M2Z0R3u7fwRDUAAIA/AAAAAADcYD74rGQ/VgiFvlV/uL6gk4c9vXPxvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIokEKnkK5X0CUhpRSlIwBbJRN6AOMAXSUR0CQltyNXHR1dX2UKGgGaAloD0MIh8CRQIMYb0CUhpRSlGgVTQwDaBZHQJCXbMKTjed1fZQoaAZoCWgPQwgSSl8IuU1gQJSGlFKUaBVN6ANoFkdAkJkuCbtqpXV9lChoBmgJaA9DCDbIJCPnhWdAlIaUUpRoFU3oA2gWR0CQmqgE2YOUdX2UKGgGaAloD0MISMK+ncTNYkCUhpRSlGgVTegDaBZHQJCcevovBad1fZQoaAZoCWgPQwjzHfzEATVjQJSGlFKUaBVN6ANoFkdAkKVdrO7g9HV9lChoBmgJaA9DCFhXBWoxql1AlIaUUpRoFU3oA2gWR0CQpt8/2TPjdX2UKGgGaAloD0MIb4RFRZxdYkCUhpRSlGgVTegDaBZHQJC6ICQtBfN1fZQoaAZoCWgPQwiuYYbGk7FhQJSGlFKUaBVN6ANoFkdAkL+EEPlMiHV9lChoBmgJaA9DCFKBk21gv2RAlIaUUpRoFU3oA2gWR0CQxAy7PIGRdX2UKGgGaAloD0MI9IdmnlzXZECUhpRSlGgVTegDaBZHQJDGdUzbeuV1fZQoaAZoCWgPQwgQIhly7LdiQJSGlFKUaBVN6ANoFkdAkMakLH+6y3V9lChoBmgJaA9DCJ6zBYTWTGBAlIaUUpRoFU3oA2gWR0CQyXfLLZBcdX2UKGgGaAloD0MI1qiHaHSsZUCUhpRSlGgVTegDaBZHQJDPpSDRMOB1fZQoaAZoCWgPQwjnUlxV9itAQJSGlFKUaBVL7GgWR0CQ1E1pj+aSdX2UKGgGaAloD0MI/UrnwzNRZECUhpRSlGgVTegDaBZHQJDYSCnP3SN1fZQoaAZoCWgPQwjHKxA9KRZkQJSGlFKUaBVN6ANoFkdAkN9jqv/za3V9lChoBmgJaA9DCIEFMGXgOV9AlIaUUpRoFU3oA2gWR0CQ4xccENe/dX2UKGgGaAloD0MIu/HuyFjCZUCUhpRSlGgVTegDaBZHQJDjoT7EYO51fZQoaAZoCWgPQwhDqb2INpxjQJSGlFKUaBVN6ANoFkdAkOVcIeHSGHV9lChoBmgJaA9DCLuAlxk2HWRAlIaUUpRoFU3oA2gWR0CQ5tR64UeudX2UKGgGaAloD0MIOe//44S3Z0CUhpRSlGgVTegDaBZHQJDopvgm7at1fZQoaAZoCWgPQwjN5nEYTKZmQJSGlFKUaBVN6ANoFkdAkPG0Ttb9qHV9lChoBmgJaA9DCLSTwVHytV9AlIaUUpRoFU3oA2gWR0CQ80BqsU7CdX2UKGgGaAloD0MI6Nms+lxBZ0CUhpRSlGgVTegDaBZHQJD1PpcHGCJ1fZQoaAZoCWgPQwj9LmzN1o5nQJSGlFKUaBVN6ANoFkdAkQvlpGnXNHV9lChoBmgJaA9DCFNCsKre42NAlIaUUpRoFU3oA2gWR0CREEEhaC+UdX2UKGgGaAloD0MIdcx5xr4lZUCUhpRSlGgVTegDaBZHQJESfv7WNFV1fZQoaAZoCWgPQwjdzynIT/tnQJSGlFKUaBVN6ANoFkdAkRVDqv/za3V9lChoBmgJaA9DCJbnwd1ZFWVAlIaUUpRoFU3oA2gWR0CRGyO1fE4vdX2UKGgGaAloD0MIFcRA176WY0CUhpRSlGgVTegDaBZHQJEfXPyCnP51fZQoaAZoCWgPQwjJrrSMVP9mQJSGlFKUaBVN6ANoFkdAkSLT1XeWOnV9lChoBmgJaA9DCHJw6ZjzmWRAlIaUUpRoFU3oA2gWR0CRKRgDifg8dX2UKGgGaAloD0MIFF/tKM7rX0CUhpRSlGgVTegDaBZHQJEsM9cKPXF1fZQoaAZoCWgPQwjLgR5qW9pgQJSGlFKUaBVN6ANoFkdAkSyquSwGGHV9lChoBmgJaA9DCFbSim8ommRAlIaUUpRoFU3oA2gWR0CRLjE0BOpLdX2UKGgGaAloD0MIw7gbRGu7YkCUhpRSlGgVTegDaBZHQJEvhv863iJ1fZQoaAZoCWgPQwiD29rCcxRpQJSGlFKUaBVN6ANoFkdAkTFCF9KEnXV9lChoBmgJaA9DCGk50EPtf2NAlIaUUpRoFU3oA2gWR0CROjk3CKrJdX2UKGgGaAloD0MIxAYLJ2lFZUCUhpRSlGgVTegDaBZHQJE7yattALR1fZQoaAZoCWgPQwhATMKFvB5iQJSGlFKUaBVN6ANoFkdAkT3z9bX6InV9lChoBmgJaA9DCHfc8LtpJW1AlIaUUpRoFU25AWgWR0CRU2K0UoKEdX2UKGgGaAloD0MIuXAgJAtVYkCUhpRSlGgVTegDaBZHQJFU6FWXC0p1fZQoaAZoCWgPQwi0rtFyoBVjQJSGlFKUaBVN6ANoFkdAkVl5/Tb35HV9lChoBmgJaA9DCK+XpghwxWFAlIaUUpRoFU3oA2gWR0CRW9oePq9odX2UKGgGaAloD0MIbY0IxsGTZkCUhpRSlGgVTegDaBZHQJFex7MPjGV1fZQoaAZoCWgPQwhaSpaTUAhQQJSGlFKUaBVL12gWR0CRYXWZ7XxwdX2UKGgGaAloD0MICB9KtOTPZ0CUhpRSlGgVTegDaBZHQJFk9IAfdRB1fZQoaAZoCWgPQwieeTnsvhdYQJSGlFKUaBVN6ANoFkdAkWmT7ZWaMXV9lChoBmgJaA9DCHZsBOL1vGFAlIaUUpRoFU3oA2gWR0CRbXWCmMwUdX2UKGgGaAloD0MIo5I6Ac34YUCUhpRSlGgVTegDaBZHQJF4czrNW2h1fZQoaAZoCWgPQwj4i9mSVTRmQJSGlFKUaBVN6ANoFkdAkXkKPn0TUXV9lChoBmgJaA9DCI7nM6Be1WJAlIaUUpRoFU3oA2gWR0CReunPVurIdX2UKGgGaAloD0MIpRZKJqf5ZkCUhpRSlGgVTegDaBZHQJF8dBY3eep1fZQoaAZoCWgPQwgcfcwHhGtjQJSGlFKUaBVN6ANoFkdAkX5P0dzXBnV9lChoBmgJaA9DCJCeIoeI3HFAlIaUUpRoFU3FA2gWR0CRhTBZpztDdX2UKGgGaAloD0MI3zXoS+/PaUCUhpRSlGgVTegDaBZHQJGIxwfhddF1fZQoaAZoCWgPQwjDg2bXvWhlQJSGlFKUaBVN6ANoFkdAkYrmfseGPHV9lChoBmgJaA9DCKUuGcfIU2RAlIaUUpRoFU3oA2gWR0CRoDFIuoP1dX2UKGgGaAloD0MIwVQza6l2ckCUhpRSlGgVTZcDaBZHQJGjxVlwtJ51fZQoaAZoCWgPQwii0oiZ/YhuQJSGlFKUaBVNYgFoFkdAkaR7qD9OynV9lChoBmgJaA9DCDG0OjnDK2JAlIaUUpRoFU3oA2gWR0CRpht65XlsdX2UKGgGaAloD0MITRO2n4zxb0CUhpRSlGgVTW4DaBZHQJGnEoNNJvp1fZQoaAZoCWgPQwjaU3JO7BRvQJSGlFKUaBVNsAJoFkdAkafYAwPAf3V9lChoBmgJaA9DCAMJih9jDWFAlIaUUpRoFU3oA2gWR0CRqupCrtE5dX2UKGgGaAloD0MIRGywcBLdYECUhpRSlGgVTegDaBZHQJGwwT7EYO51fZQoaAZoCWgPQwgKSWb1Dh9kQJSGlFKUaBVN6ANoFkdAkbVam8/Uv3V9lChoBmgJaA9DCMTqjzCMNmVAlIaUUpRoFU3oA2gWR0CRxAu6VdHEdX2UKGgGaAloD0MIFF6CU5/LZECUhpRSlGgVTegDaBZHQJHEmb2Dg651fZQoaAZoCWgPQwgXoG01K4ZyQJSGlFKUaBVNJwJoFkdAkcYG9lEqlXV9lChoBmgJaA9DCLA73XninmJAlIaUUpRoFU3oA2gWR0CRxlzNUwSKdX2UKGgGaAloD0MIT3Yzo582ZUCUhpRSlGgVTegDaBZHQJHHw/0NBnl1fZQoaAZoCWgPQwjFHtrHinVjQJSGlFKUaBVN6ANoFkdAkc/Mwg1WKnV9lChoBmgJaA9DCNMRwM3inHBAlIaUUpRoFU0TA2gWR0CR0B3H7xd6dX2UKGgGaAloD0MIuY5xxcUdZECUhpRSlGgVTegDaBZHQJHS5Z5iVjZ1fZQoaAZoCWgPQwih8xq7ROhjQJSGlFKUaBVN6ANoFkdAkdS04JeE7HV9lChoBmgJaA9DCMMstHMadmJAlIaUUpRoFU3oA2gWR0CR2BmV7hNudX2UKGgGaAloD0MItFVJZB/UYUCUhpRSlGgVTegDaBZHQJHs8RdyDI11fZQoaAZoCWgPQwgdjq7S3ZhkQJSGlFKUaBVN6ANoFkdAke9O1KGtZHV9lChoBmgJaA9DCNqs+lxtmXBAlIaUUpRoFU04A2gWR0CR7525hBqsdX2UKGgGaAloD0MIMjz2s1jeXUCUhpRSlGgVTegDaBZHQJHv+/RE4Nt1fZQoaAZoCWgPQwhl3xXB/9ZnQJSGlFKUaBVN6ANoFkdAkfKh1cMVlHV9lChoBmgJaA9DCEMewY2UWnBAlIaUUpRoFU14A2gWR0CR9iXqJMxodX2UKGgGaAloD0MIaqZ7ndStTECUhpRSlGgVS/toFkdAkftTfvWpZXV9lChoBmgJaA9DCGsotRcRSnFAlIaUUpRoFU2wAmgWR0CR+3TpgTh6dX2UKGgGaAloD0MI0cq9wKzUcUCUhpRSlGgVTScCaBZHQJH8dnRLK3d1fZQoaAZoCWgPQwjcLjTX6dlxQJSGlFKUaBVNnAFoFkdAkf2F+mWMTHV9lChoBmgJaA9DCLA73XlinXJAlIaUUpRoFU1NAWgWR0CSAx4XoC+2dX2UKGgGaAloD0MIX9TuVwFjcUCUhpRSlGgVTacCaBZHQJIDH9Oymhx1fZQoaAZoCWgPQwjRQCybeQRwQJSGlFKUaBVNXgJoFkdAkgPX1WbPQnV9lChoBmgJaA9DCPFjzF1LZW9AlIaUUpRoFU3NA2gWR0CSBp+vyLAIdX2UKGgGaAloD0MIbCHIQQnxZUCUhpRSlGgVTegDaBZHQJIHfaM72ct1fZQoaAZoCWgPQwgdOGdEafViQJSGlFKUaBVN6ANoFkdAkgj+5J9RaXV9lChoBmgJaA9DCIV3uYhvaWZAlIaUUpRoFU3oA2gWR0CSCULJSzgNdX2UKGgGaAloD0MIlKKVe8FicECUhpRSlGgVTUABaBZHQJILpCiRGMJ1fZQoaAZoCWgPQwgKZkzBmpRvQJSGlFKUaBVNgQFoFkdAkg2eUpuuR3V9lChoBmgJaA9DCI/Ey9M5Wm9AlIaUUpRoFU0CA2gWR0CSEf3K0UoKdX2UKGgGaAloD0MICMcse9IRcUCUhpRSlGgVTccDaBZHQJITU0j1PFh1fZQoaAZoCWgPQwhIUz2Zf1ttQJSGlFKUaBVNmgFoFkdAkhcTtPYWcnV9lChoBmgJaA9DCHejj/kAV3FAlIaUUpRoFU0rA2gWR0CSF4djXnQqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL29ubm8vLnZlbnYvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL29ubm8vLnZlbnYvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-1026-aws-x86_64-with-glibc2.35 #30-Ubuntu SMP Wed Nov 23 14:15:21 UTC 2022", "Python": "3.10.6", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2c685276d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2c68527760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2c685277f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2c68527880>", "_build": "<function ActorCriticPolicy._build at 0x7f2c68527910>", "forward": "<function ActorCriticPolicy.forward at 0x7f2c685279a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2c68527a30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2c68527ac0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2c68527b50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2c68527be0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2c68527c70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2c68b32140>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 4030464, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673099971598583242, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL29ubm8vLnZlbnYvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL29ubm8vLnZlbnYvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAGbxlrxSeJW76o8zvC2OijwPQAi98k9sPQAAgD8AAIA/M/0ovG4ogz8S5kk9FggAvyIRgr1JeCg+AAAAAAAAAACaGjc9hQu2P5VFhz5XCRy+gzdBPd6lPT4AAAAAAAAAAFrCpL2e06E/70YPv0OeIr8WC2u9fK2XvgAAAAAAAAAADRb3PYtJdD/GgB0+8pcBv1GXGz5gA6A9AAAAAAAAAADmL8A9rrGbulNf8Lr3rzy22HAeOnNaCToAAAAAAACAP4BwFz2PDnG6vL6POYSH3DRX1mi6u6imuAAAgD8AAIA/et0FPtcObDxkcJi+I8uzvkYO+b2g9VG9AACAPwAAAACzERU9SZNiP8btYD2xxuO+TzmEPYqUBj0AAAAAAAAAAM3SXjxyo68/OADkPruvGb9JIB68dlyXvAAAAAAAAAAAmnG7vctxOj/VMjk+I+z4vtV/dL2ewyQ+AAAAAAAAAADNzE05FGqOut7e1LxqU8A8SrYYuzgWpT0AAIA/AACAPzOrz7uEQbc+5UbgPSGu0L4YkQc9myj+PAAAAAAAAAAAzU2aPEM2TLylbZ+8Xv3kPFqMOr0ylEO8AACAPwAAgD8AVHC8SP+HumhvjjpC9kG2qj8/uxSPpbkAAIA/AACAP2YPOT3I9I286z/4PUAl9b25MsO9MPcAvwAAgD8AAIA/M5mRPAxEfz5NUPi8Y27Dvt1yWD3D9RA8AAAAAAAAAABti4a+KEdAP+PVNb53b9S+mA7LvvKtkL0AAAAAAAAAADOlfTzDnTG63d2Tu6JOtriHGxG7cMgmOAAAgD8AAIA/zYxhO6TUabtFA4i8GnaYPFCNtrw0S4I9AACAPwAAgD8NJaQ9wxltuvaYUjkiaDc0NVniut7odrgAAAAAAACAP4DPtL2vAVo/KoTcPUIF9b6tvxW+kmQ+PgAAAAAAAAAArSQsPgNOvz/bsiM/D9kdvrytcD6boMw+AAAAAAAAAADmXBI9FX8EP3Jn0z16vbu+R1fjPRkYyz0AAAAAAAAAABqB5b281h8/syh5Pn8X6L4xUOi7w05cPgAAAAAAAAAAmu3vvI+OcrrgQC64y64ys4nFy7h9/0o3AACAPwAAgD8a4AC9Uy5NPwZliz3qOcS+SscdvStYzD0AAAAAAAAAAJqRhLt72rC6hpGGOPp2aTNHhuW5Vt6ZtwAAgD8AAIA/TfgCPQ2HXD7Fozy8i9XTvpwjDjx2fnI9AAAAAAAAAABmvvA79sRZumv0ADncv4M04+wcOtscFLgAAIA/AACAP2aCHz1PtVc9LxKOPT5zwr6l8aE92PJQvAAAAAAAAAAAmkxUPXF8Pjz6a4A890OvvgUcij0i04e9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVSRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+G2I8RqNcUCUhpRSlIwBbJRL+IwBdJRHQKnj0z67/XJ1fZQoaAZoCWgPQwh72AsF7HZyQJSGlFKUaBVNCQFoFkdAqePZkupS8HV9lChoBmgJaA9DCLgDdcqj+lBAlIaUUpRoFUucaBZHQKnkAn2qT8p1fZQoaAZoCWgPQwhDc51GGhRxQJSGlFKUaBVL8WgWR0Cp5AhRqGlAdX2UKGgGaAloD0MIIlFoWfeYcECUhpRSlGgVS+ZoFkdAqeQkSZjQRnV9lChoBmgJaA9DCBxEa0VblnBAlIaUUpRoFU0UAWgWR0Cp5Cs5wOvudX2UKGgGaAloD0MI9kArMOTIcUCUhpRSlGgVTUwBaBZHQKnkX0Qsf7t1fZQoaAZoCWgPQwjU78LWbCJwQJSGlFKUaBVNEgFoFkdAqeSxOBUaQ3V9lChoBmgJaA9DCN/98V61dXFAlIaUUpRoFU0WAWgWR0Cp5TlvqC6IdX2UKGgGaAloD0MIdt1bkZidcUCUhpRSlGgVS/xoFkdAqeU/h4t6HHV9lChoBmgJaA9DCEvqBDSRSHFAlIaUUpRoFU0WAWgWR0Cp5YI86mwadX2UKGgGaAloD0MI5MCr5Y7Tc0CUhpRSlGgVS8ZoFkdAqeW7INmUW3V9lChoBmgJaA9DCNHP1OuW6HBAlIaUUpRoFUvMaBZHQKnl5yiEg4h1fZQoaAZoCWgPQwiCcAUUKrtxQJSGlFKUaBVL4mgWR0Cp5e2eQMhHdX2UKGgGaAloD0MIotPzbiz8Q0CUhpRSlGgVS5NoFkdAqeYx9kSVW3V9lChoBmgJaA9DCOIDO/4LAlBAlIaUUpRoFUuFaBZHQKnm5ygf2bp1fZQoaAZoCWgPQwiwcJLmDxBwQJSGlFKUaBVL6GgWR0Cp50VkUbkwdX2UKGgGaAloD0MIms5OBscxb0CUhpRSlGgVS91oFkdAqeeZigCfYnV9lChoBmgJaA9DCPRTHAdeKXJAlIaUUpRoFUvgaBZHQKnnoANoak11fZQoaAZoCWgPQwgGD9O+Od5xQJSGlFKUaBVL9mgWR0Cp580+s5n2dX2UKGgGaAloD0MISyAldq2ecUCUhpRSlGgVTT4BaBZHQKnn5o/zJ6p1fZQoaAZoCWgPQwizB1qB4Up0QJSGlFKUaBVNOgFoFkdAqeg6zzErG3V9lChoBmgJaA9DCFaeQNjphnBAlIaUUpRoFUv2aBZHQKnolHXmNip1fZQoaAZoCWgPQwi5xfzc0AxzQJSGlFKUaBVL1mgWR0Cp6LSo4uK5dX2UKGgGaAloD0MI/z147VKZcUCUhpRSlGgVTQQBaBZHQKnpIrKeTV51fZQoaAZoCWgPQwg/x0eLMy9oQJSGlFKUaBVN6ANoFkdAqek9fJFLFnV9lChoBmgJaA9DCJpbIayG4XFAlIaUUpRoFU1WAWgWR0Cp6V5jpcHGdX2UKGgGaAloD0MIH6FmSJWpckCUhpRSlGgVTTIBaBZHQKnpZScbzbx1fZQoaAZoCWgPQwhJY7SOqkNuQJSGlFKUaBVL6WgWR0Cp6YoxYaHcdX2UKGgGaAloD0MIF/TeGIJxcECUhpRSlGgVS9JoFkdAqemisny/bnV9lChoBmgJaA9DCGHEPgEUtXNAlIaUUpRoFUv+aBZHQKnpr5CWu5l1fZQoaAZoCWgPQwhz2H3HMMRwQJSGlFKUaBVNKQFoFkdAqen/vSc9XHV9lChoBmgJaA9DCJG6nX1lZnFAlIaUUpRoFU0PAWgWR0Cp6kqQzUI+dX2UKGgGaAloD0MIA1slWBzkcUCUhpRSlGgVTTIBaBZHQKnqbZM+NcZ1fZQoaAZoCWgPQwijA5Kwb45mQJSGlFKUaBVN6ANoFkdAqeqKEg4ffXV9lChoBmgJaA9DCDcAGxCh0XFAlIaUUpRoFU0PAWgWR0Cp6q3aJyhjdX2UKGgGaAloD0MIou4DkNpNckCUhpRSlGgVS/poFkdAqesfEZR8+nV9lChoBmgJaA9DCFTGv894eHFAlIaUUpRoFUvzaBZHQKnrQna37UJ1fZQoaAZoCWgPQwjBVDNrKdxyQJSGlFKUaBVL4WgWR0Cp6039rGipdX2UKGgGaAloD0MIuLHZkWrxbUCUhpRSlGgVTWgBaBZHQKnrY4Ia99N1fZQoaAZoCWgPQwjzOXe73l9wQJSGlFKUaBVL3WgWR0Cp63yd4FA3dX2UKGgGaAloD0MIYAZjRKIZc0CUhpRSlGgVTU8BaBZHQKnri+kgwGp1fZQoaAZoCWgPQwhJaTaPw1pxQJSGlFKUaBVNSQFoFkdAqeu5AnlXBHV9lChoBmgJaA9DCIkkehlFp3FAlIaUUpRoFU2+AWgWR0Cp6/CO3lS1dX2UKGgGaAloD0MIGeQuwtSucUCUhpRSlGgVTSEBaBZHQKnr9gflp491fZQoaAZoCWgPQwjlfLH3YjtxQJSGlFKUaBVNEgFoFkdAqexJWBBiTnV9lChoBmgJaA9DCPoK0owFt3BAlIaUUpRoFU0aAWgWR0Cp7Elm4AjqdX2UKGgGaAloD0MIj1N0JBenc0CUhpRSlGgVS+toFkdAqexkFOfukXV9lChoBmgJaA9DCPq2YKmuPG5AlIaUUpRoFUvYaBZHQKnslKXfIjp1fZQoaAZoCWgPQwiKO97kdytxQJSGlFKUaBVL22gWR0Cp7KAY51eTdX2UKGgGaAloD0MIjDGwjuMKU0CUhpRSlGgVS51oFkdAqe0Q00m+kHV9lChoBmgJaA9DCJtUNNb+zm9AlIaUUpRoFUvtaBZHQKntJm5lOGl1fZQoaAZoCWgPQwgsZoS3R+ZyQJSGlFKUaBVNCAFoFkdAqe1GmDUVjHV9lChoBmgJaA9DCL0A++gUeXNAlIaUUpRoFUvKaBZHQKnto4Wk8A91fZQoaAZoCWgPQwh9PsqIC0BzQJSGlFKUaBVNBAFoFkdAqe266J66a3V9lChoBmgJaA9DCHTsoBLXPUlAlIaUUpRoFUudaBZHQKnt29WZJCl1fZQoaAZoCWgPQwhgArfu5sByQJSGlFKUaBVLzWgWR0Cp7mlRgqmTdX2UKGgGaAloD0MINdO9Tur2cUCUhpRSlGgVTREBaBZHQKnusCGvfTF1fZQoaAZoCWgPQwgzUu+pXNxwQJSGlFKUaBVL/mgWR0Cp7sKeK8+SdX2UKGgGaAloD0MI9E9wsWIedECUhpRSlGgVS+toFkdAqe7I4VARkHV9lChoBmgJaA9DCD81XrrJvHJAlIaUUpRoFUv7aBZHQKnu5npSrHV1fZQoaAZoCWgPQwilEp7Qa+9vQJSGlFKUaBVL+WgWR0Cp7wNQj2SMdX2UKGgGaAloD0MIU84Xey93cUCUhpRSlGgVTQcBaBZHQKnvMLeANG51fZQoaAZoCWgPQwjKw0KtaWpNQJSGlFKUaBVLs2gWR0Cp7+bxmTTwdX2UKGgGaAloD0MI4ba28HyAc0CUhpRSlGgVS8doFkdAqfAbvsqrinV9lChoBmgJaA9DCIKo+wCkYHNAlIaUUpRoFUv6aBZHQKnwL1aGHpN1fZQoaAZoCWgPQwhj0Amhw8RxQJSGlFKUaBVL3GgWR0Cp8Dw3gk1NdX2UKGgGaAloD0MIXI5XIPqUcECUhpRSlGgVS9loFkdAqfBauU2UCHV9lChoBmgJaA9DCHxFt14TkHNAlIaUUpRoFUv5aBZHQKnwySwnpjd1fZQoaAZoCWgPQwjmJJS+0HhzQJSGlFKUaBVNIgFoFkdAqfDie2/i53V9lChoBmgJaA9DCJ89l6lJ+DhAlIaUUpRoFUucaBZHQKnw6NCJGfB1fZQoaAZoCWgPQwhhVFInoM5xQJSGlFKUaBVNgwFoFkdAqfEPe3x4IXV9lChoBmgJaA9DCA+4rpgRiVFAlIaUUpRoFUuYaBZHQKnxU9ic5Kh1fZQoaAZoCWgPQwiUZ14Ou/FxQJSGlFKUaBVNEQFoFkdAqfGlxbSql3V9lChoBmgJaA9DCKwahLnd5G5AlIaUUpRoFU0IAWgWR0Cp8f0YsNDudX2UKGgGaAloD0MIyuGTTuTYcUCUhpRSlGgVS9RoFkdAqfIR3zMA3nV9lChoBmgJaA9DCJ2+nq+ZGnJAlIaUUpRoFU1aAWgWR0Cp8iXcgyM2dX2UKGgGaAloD0MI2H3H8Fgdc0CUhpRSlGgVTaIBaBZHQKnyU3Zwn6V1fZQoaAZoCWgPQwjtDikGCGhyQJSGlFKUaBVNCAFoFkdAqfJstXgccXV9lChoBmgJaA9DCCZuFcRAlnJAlIaUUpRoFU0FAWgWR0Cp8r/SH/LldX2UKGgGaAloD0MIfJkoQurhc0CUhpRSlGgVTSgBaBZHQKnzON+b3Gp1fZQoaAZoCWgPQwgkQiPYuHRxQJSGlFKUaBVNJAFoFkdAqfN8UVSGanV9lChoBmgJaA9DCJUNaypLcHFAlIaUUpRoFUv0aBZHQKnzkUi6g/V1fZQoaAZoCWgPQwgl5llJK0lzQJSGlFKUaBVNDwFoFkdAqfOspRXOnnV9lChoBmgJaA9DCE88ZwtIu3JAlIaUUpRoFUvRaBZHQKnz5hCMPz51fZQoaAZoCWgPQwhXXYdqintxQJSGlFKUaBVNPwFoFkdAqfPzkCFK03V9lChoBmgJaA9DCBb7y+6JS3JAlIaUUpRoFU0IAWgWR0Cp9FFgtvn9dX2UKGgGaAloD0MIXfksz8M3cUCUhpRSlGgVS+5oFkdAqfTkxASnL3V9lChoBmgJaA9DCBxg5ju4uXBAlIaUUpRoFUv9aBZHQKn1Br5ZbIN1fZQoaAZoCWgPQwgMQKN0qflyQJSGlFKUaBVNEwFoFkdAqfU2lyimEXV9lChoBmgJaA9DCOymlNcK9HBAlIaUUpRoFUvPaBZHQKn1Zfek56t1fZQoaAZoCWgPQwgLfEW3XmlyQJSGlFKUaBVL3mgWR0Cp9YCTMaCMdX2UKGgGaAloD0MIBW1y+ORWc0CUhpRSlGgVTQgBaBZHQKn1yeV9nbt1fZQoaAZoCWgPQwiiQ+BIoAtSQJSGlFKUaBVLlWgWR0Cp9fKaw2VFdX2UKGgGaAloD0MI1lWBWsxzckCUhpRSlGgVS+ZoFkdAqfYOW6bvw3V9lChoBmgJaA9DCLpnXaPllXBAlIaUUpRoFUvwaBZHQKn2L4ptrKx1fZQoaAZoCWgPQwiiemtgKzhzQJSGlFKUaBVL5WgWR0Cp9sPsiSq3dX2UKGgGaAloD0MIqRWm73VccUCUhpRSlGgVTUwBaBZHQKn3AuB+Wnl1fZQoaAZoCWgPQwgcCMkCJs9xQJSGlFKUaBVL8WgWR0Cp9xCEQGwBdX2UKGgGaAloD0MIkQw5tp7acUCUhpRSlGgVS/9oFkdAqfdRhOP/73VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL29ubm8vLnZlbnYvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL29ubm8vLnZlbnYvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-1026-aws-x86_64-with-glibc2.35 #30-Ubuntu SMP Wed Nov 23 14:15:21 UTC 2022", "Python": "3.10.6", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
ppo-LunarLander-v2-onno.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3e737b4e259b56e57c831f539041eb91ec292575a4d06489cce53e096a1cdfa4
3
- size 147489
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68f43e4310754c406ba3c072c7592f26ff793f3751dd305a9feec8fc64b6187a
3
+ size 147978
ppo-LunarLander-v2-onno/data CHANGED
@@ -4,25 +4,25 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc1ba81b6d0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc1ba81b760>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc1ba81b7f0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc1ba81b880>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fc1ba81b910>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fc1ba81b9a0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc1ba81ba30>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fc1ba81bac0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc1ba81bb50>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc1ba81bbe0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc1ba81bc70>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc._abc_data object at 0x7fc1ba81dc00>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
25
- ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
  "dtype": "float32",
27
  "_shape": [
28
  8
@@ -35,19 +35,19 @@
35
  },
36
  "action_space": {
37
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
- ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
  "n": 4,
40
  "_shape": [],
41
  "dtype": "int64",
42
  "_np_random": null
43
  },
44
- "n_envs": 16,
45
- "num_timesteps": 1015808,
46
- "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1673083529309179132,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,28 +56,28 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNPMLzhxJi6YNiBO8FQ7TiGO5k62pkZugAAgD8AAIA/AKMcvXuamboKsAm5BjRntozRIjnauSA4AACAPwAAgD8zJD29rel6Ps1TMbxmh12+omMbvQsZV7wAAAAAAAAAAJoWJj0UqoG6Bl5eOVWCqbVA4yG7eyyhtAAAgD8AAIA/AAasvMNRYrpWBCC39RoRsnXlrbm2Yzw2AACAPwAAgD/Nzew8FLCluiXR2DqNDrI1KqnMOTBK+bkAAIA/AACAP2Z+Hz0pWAS6NlFque+bB7Y45WY7SraMOAAAgD8AAIA/M45zva7FurrtHdQ4oxX9td/JETkD9++3AACAPwAAgD8ar2G9LqQvP9okLj2PTY++A61BvdWCjTwAAAAAAAAAAE1hND2uMZe6phrtuiK64rUGKt05zAsJOgAAgD8AAIA/s7pFPfbcWbqzi1C6L5pNtVOdmLpedHU5AACAPwAAgD+aSd86rnGHuroPhzXtIZ8wqdM0uTUAtLQAAIA/AACAP6aJw70DhgU9gC19Pm+TDr7+yrc8O93ZuwAAAAAAAAAAmvuzvMONL7rX7Cy4Btljs/FjFDvONkw3AACAPwAAgD8Akbu818M5uYjLGjts40M2Z0R3u7fwRDUAAIA/AAAAAADcYD74rGQ/VgiFvlV/uL6gk4c9vXPxvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIokEKnkK5X0CUhpRSlIwBbJRN6AOMAXSUR0CQltyNXHR1dX2UKGgGaAloD0MIh8CRQIMYb0CUhpRSlGgVTQwDaBZHQJCXbMKTjed1fZQoaAZoCWgPQwgSSl8IuU1gQJSGlFKUaBVN6ANoFkdAkJkuCbtqpXV9lChoBmgJaA9DCDbIJCPnhWdAlIaUUpRoFU3oA2gWR0CQmqgE2YOUdX2UKGgGaAloD0MISMK+ncTNYkCUhpRSlGgVTegDaBZHQJCcevovBad1fZQoaAZoCWgPQwjzHfzEATVjQJSGlFKUaBVN6ANoFkdAkKVdrO7g9HV9lChoBmgJaA9DCFhXBWoxql1AlIaUUpRoFU3oA2gWR0CQpt8/2TPjdX2UKGgGaAloD0MIb4RFRZxdYkCUhpRSlGgVTegDaBZHQJC6ICQtBfN1fZQoaAZoCWgPQwiuYYbGk7FhQJSGlFKUaBVN6ANoFkdAkL+EEPlMiHV9lChoBmgJaA9DCFKBk21gv2RAlIaUUpRoFU3oA2gWR0CQxAy7PIGRdX2UKGgGaAloD0MI9IdmnlzXZECUhpRSlGgVTegDaBZHQJDGdUzbeuV1fZQoaAZoCWgPQwgQIhly7LdiQJSGlFKUaBVN6ANoFkdAkMakLH+6y3V9lChoBmgJaA9DCJ6zBYTWTGBAlIaUUpRoFU3oA2gWR0CQyXfLLZBcdX2UKGgGaAloD0MI1qiHaHSsZUCUhpRSlGgVTegDaBZHQJDPpSDRMOB1fZQoaAZoCWgPQwjnUlxV9itAQJSGlFKUaBVL7GgWR0CQ1E1pj+aSdX2UKGgGaAloD0MI/UrnwzNRZECUhpRSlGgVTegDaBZHQJDYSCnP3SN1fZQoaAZoCWgPQwjHKxA9KRZkQJSGlFKUaBVN6ANoFkdAkN9jqv/za3V9lChoBmgJaA9DCIEFMGXgOV9AlIaUUpRoFU3oA2gWR0CQ4xccENe/dX2UKGgGaAloD0MIu/HuyFjCZUCUhpRSlGgVTegDaBZHQJDjoT7EYO51fZQoaAZoCWgPQwhDqb2INpxjQJSGlFKUaBVN6ANoFkdAkOVcIeHSGHV9lChoBmgJaA9DCLuAlxk2HWRAlIaUUpRoFU3oA2gWR0CQ5tR64UeudX2UKGgGaAloD0MIOe//44S3Z0CUhpRSlGgVTegDaBZHQJDopvgm7at1fZQoaAZoCWgPQwjN5nEYTKZmQJSGlFKUaBVN6ANoFkdAkPG0Ttb9qHV9lChoBmgJaA9DCLSTwVHytV9AlIaUUpRoFU3oA2gWR0CQ80BqsU7CdX2UKGgGaAloD0MI6Nms+lxBZ0CUhpRSlGgVTegDaBZHQJD1PpcHGCJ1fZQoaAZoCWgPQwj9LmzN1o5nQJSGlFKUaBVN6ANoFkdAkQvlpGnXNHV9lChoBmgJaA9DCFNCsKre42NAlIaUUpRoFU3oA2gWR0CREEEhaC+UdX2UKGgGaAloD0MIdcx5xr4lZUCUhpRSlGgVTegDaBZHQJESfv7WNFV1fZQoaAZoCWgPQwjdzynIT/tnQJSGlFKUaBVN6ANoFkdAkRVDqv/za3V9lChoBmgJaA9DCJbnwd1ZFWVAlIaUUpRoFU3oA2gWR0CRGyO1fE4vdX2UKGgGaAloD0MIFcRA176WY0CUhpRSlGgVTegDaBZHQJEfXPyCnP51fZQoaAZoCWgPQwjJrrSMVP9mQJSGlFKUaBVN6ANoFkdAkSLT1XeWOnV9lChoBmgJaA9DCHJw6ZjzmWRAlIaUUpRoFU3oA2gWR0CRKRgDifg8dX2UKGgGaAloD0MIFF/tKM7rX0CUhpRSlGgVTegDaBZHQJEsM9cKPXF1fZQoaAZoCWgPQwjLgR5qW9pgQJSGlFKUaBVN6ANoFkdAkSyquSwGGHV9lChoBmgJaA9DCFbSim8ommRAlIaUUpRoFU3oA2gWR0CRLjE0BOpLdX2UKGgGaAloD0MIw7gbRGu7YkCUhpRSlGgVTegDaBZHQJEvhv863iJ1fZQoaAZoCWgPQwiD29rCcxRpQJSGlFKUaBVN6ANoFkdAkTFCF9KEnXV9lChoBmgJaA9DCGk50EPtf2NAlIaUUpRoFU3oA2gWR0CROjk3CKrJdX2UKGgGaAloD0MIxAYLJ2lFZUCUhpRSlGgVTegDaBZHQJE7yattALR1fZQoaAZoCWgPQwhATMKFvB5iQJSGlFKUaBVN6ANoFkdAkT3z9bX6InV9lChoBmgJaA9DCHfc8LtpJW1AlIaUUpRoFU25AWgWR0CRU2K0UoKEdX2UKGgGaAloD0MIuXAgJAtVYkCUhpRSlGgVTegDaBZHQJFU6FWXC0p1fZQoaAZoCWgPQwi0rtFyoBVjQJSGlFKUaBVN6ANoFkdAkVl5/Tb35HV9lChoBmgJaA9DCK+XpghwxWFAlIaUUpRoFU3oA2gWR0CRW9oePq9odX2UKGgGaAloD0MIbY0IxsGTZkCUhpRSlGgVTegDaBZHQJFex7MPjGV1fZQoaAZoCWgPQwhaSpaTUAhQQJSGlFKUaBVL12gWR0CRYXWZ7XxwdX2UKGgGaAloD0MICB9KtOTPZ0CUhpRSlGgVTegDaBZHQJFk9IAfdRB1fZQoaAZoCWgPQwieeTnsvhdYQJSGlFKUaBVN6ANoFkdAkWmT7ZWaMXV9lChoBmgJaA9DCHZsBOL1vGFAlIaUUpRoFU3oA2gWR0CRbXWCmMwUdX2UKGgGaAloD0MIo5I6Ac34YUCUhpRSlGgVTegDaBZHQJF4czrNW2h1fZQoaAZoCWgPQwj4i9mSVTRmQJSGlFKUaBVN6ANoFkdAkXkKPn0TUXV9lChoBmgJaA9DCI7nM6Be1WJAlIaUUpRoFU3oA2gWR0CReunPVurIdX2UKGgGaAloD0MIpRZKJqf5ZkCUhpRSlGgVTegDaBZHQJF8dBY3eep1fZQoaAZoCWgPQwgcfcwHhGtjQJSGlFKUaBVN6ANoFkdAkX5P0dzXBnV9lChoBmgJaA9DCJCeIoeI3HFAlIaUUpRoFU3FA2gWR0CRhTBZpztDdX2UKGgGaAloD0MI3zXoS+/PaUCUhpRSlGgVTegDaBZHQJGIxwfhddF1fZQoaAZoCWgPQwjDg2bXvWhlQJSGlFKUaBVN6ANoFkdAkYrmfseGPHV9lChoBmgJaA9DCKUuGcfIU2RAlIaUUpRoFU3oA2gWR0CRoDFIuoP1dX2UKGgGaAloD0MIwVQza6l2ckCUhpRSlGgVTZcDaBZHQJGjxVlwtJ51fZQoaAZoCWgPQwii0oiZ/YhuQJSGlFKUaBVNYgFoFkdAkaR7qD9OynV9lChoBmgJaA9DCDG0OjnDK2JAlIaUUpRoFU3oA2gWR0CRpht65XlsdX2UKGgGaAloD0MITRO2n4zxb0CUhpRSlGgVTW4DaBZHQJGnEoNNJvp1fZQoaAZoCWgPQwjaU3JO7BRvQJSGlFKUaBVNsAJoFkdAkafYAwPAf3V9lChoBmgJaA9DCAMJih9jDWFAlIaUUpRoFU3oA2gWR0CRqupCrtE5dX2UKGgGaAloD0MIRGywcBLdYECUhpRSlGgVTegDaBZHQJGwwT7EYO51fZQoaAZoCWgPQwgKSWb1Dh9kQJSGlFKUaBVN6ANoFkdAkbVam8/Uv3V9lChoBmgJaA9DCMTqjzCMNmVAlIaUUpRoFU3oA2gWR0CRxAu6VdHEdX2UKGgGaAloD0MIFF6CU5/LZECUhpRSlGgVTegDaBZHQJHEmb2Dg651fZQoaAZoCWgPQwgXoG01K4ZyQJSGlFKUaBVNJwJoFkdAkcYG9lEqlXV9lChoBmgJaA9DCLA73XninmJAlIaUUpRoFU3oA2gWR0CRxlzNUwSKdX2UKGgGaAloD0MIT3Yzo582ZUCUhpRSlGgVTegDaBZHQJHHw/0NBnl1fZQoaAZoCWgPQwjFHtrHinVjQJSGlFKUaBVN6ANoFkdAkc/Mwg1WKnV9lChoBmgJaA9DCNMRwM3inHBAlIaUUpRoFU0TA2gWR0CR0B3H7xd6dX2UKGgGaAloD0MIuY5xxcUdZECUhpRSlGgVTegDaBZHQJHS5Z5iVjZ1fZQoaAZoCWgPQwih8xq7ROhjQJSGlFKUaBVN6ANoFkdAkdS04JeE7HV9lChoBmgJaA9DCMMstHMadmJAlIaUUpRoFU3oA2gWR0CR2BmV7hNudX2UKGgGaAloD0MItFVJZB/UYUCUhpRSlGgVTegDaBZHQJHs8RdyDI11fZQoaAZoCWgPQwgdjq7S3ZhkQJSGlFKUaBVN6ANoFkdAke9O1KGtZHV9lChoBmgJaA9DCNqs+lxtmXBAlIaUUpRoFU04A2gWR0CR7525hBqsdX2UKGgGaAloD0MIMjz2s1jeXUCUhpRSlGgVTegDaBZHQJHv+/RE4Nt1fZQoaAZoCWgPQwhl3xXB/9ZnQJSGlFKUaBVN6ANoFkdAkfKh1cMVlHV9lChoBmgJaA9DCEMewY2UWnBAlIaUUpRoFU14A2gWR0CR9iXqJMxodX2UKGgGaAloD0MIaqZ7ndStTECUhpRSlGgVS/toFkdAkftTfvWpZXV9lChoBmgJaA9DCGsotRcRSnFAlIaUUpRoFU2wAmgWR0CR+3TpgTh6dX2UKGgGaAloD0MI0cq9wKzUcUCUhpRSlGgVTScCaBZHQJH8dnRLK3d1fZQoaAZoCWgPQwjcLjTX6dlxQJSGlFKUaBVNnAFoFkdAkf2F+mWMTHV9lChoBmgJaA9DCLA73XlinXJAlIaUUpRoFU1NAWgWR0CSAx4XoC+2dX2UKGgGaAloD0MIX9TuVwFjcUCUhpRSlGgVTacCaBZHQJIDH9Oymhx1fZQoaAZoCWgPQwjRQCybeQRwQJSGlFKUaBVNXgJoFkdAkgPX1WbPQnV9lChoBmgJaA9DCPFjzF1LZW9AlIaUUpRoFU3NA2gWR0CSBp+vyLAIdX2UKGgGaAloD0MIbCHIQQnxZUCUhpRSlGgVTegDaBZHQJIHfaM72ct1fZQoaAZoCWgPQwgdOGdEafViQJSGlFKUaBVN6ANoFkdAkgj+5J9RaXV9lChoBmgJaA9DCIV3uYhvaWZAlIaUUpRoFU3oA2gWR0CSCULJSzgNdX2UKGgGaAloD0MIlKKVe8FicECUhpRSlGgVTUABaBZHQJILpCiRGMJ1fZQoaAZoCWgPQwgKZkzBmpRvQJSGlFKUaBVNgQFoFkdAkg2eUpuuR3V9lChoBmgJaA9DCI/Ey9M5Wm9AlIaUUpRoFU0CA2gWR0CSEf3K0UoKdX2UKGgGaAloD0MICMcse9IRcUCUhpRSlGgVTccDaBZHQJITU0j1PFh1fZQoaAZoCWgPQwhIUz2Zf1ttQJSGlFKUaBVNmgFoFkdAkhcTtPYWcnV9lChoBmgJaA9DCHejj/kAV3FAlIaUUpRoFU0rA2gWR0CSF4djXnQqdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 248,
79
  "n_steps": 1024,
80
- "gamma": 0.999,
81
  "gae_lambda": 0.98,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2c685276d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2c68527760>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2c685277f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2c68527880>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2c68527910>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2c685279a0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2c68527a30>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2c68527ac0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2c68527b50>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2c68527be0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2c68527c70>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x7f2c68b32140>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
  "dtype": "float32",
27
  "_shape": [
28
  8
 
35
  },
36
  "action_space": {
37
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
  "n": 4,
40
  "_shape": [],
41
  "dtype": "int64",
42
  "_np_random": null
43
  },
44
+ "n_envs": 32,
45
+ "num_timesteps": 4030464,
46
+ "_total_timesteps": 4000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1673099971598583242,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAGbxlrxSeJW76o8zvC2OijwPQAi98k9sPQAAgD8AAIA/M/0ovG4ogz8S5kk9FggAvyIRgr1JeCg+AAAAAAAAAACaGjc9hQu2P5VFhz5XCRy+gzdBPd6lPT4AAAAAAAAAAFrCpL2e06E/70YPv0OeIr8WC2u9fK2XvgAAAAAAAAAADRb3PYtJdD/GgB0+8pcBv1GXGz5gA6A9AAAAAAAAAADmL8A9rrGbulNf8Lr3rzy22HAeOnNaCToAAAAAAACAP4BwFz2PDnG6vL6POYSH3DRX1mi6u6imuAAAgD8AAIA/et0FPtcObDxkcJi+I8uzvkYO+b2g9VG9AACAPwAAAACzERU9SZNiP8btYD2xxuO+TzmEPYqUBj0AAAAAAAAAAM3SXjxyo68/OADkPruvGb9JIB68dlyXvAAAAAAAAAAAmnG7vctxOj/VMjk+I+z4vtV/dL2ewyQ+AAAAAAAAAADNzE05FGqOut7e1LxqU8A8SrYYuzgWpT0AAIA/AACAPzOrz7uEQbc+5UbgPSGu0L4YkQc9myj+PAAAAAAAAAAAzU2aPEM2TLylbZ+8Xv3kPFqMOr0ylEO8AACAPwAAgD8AVHC8SP+HumhvjjpC9kG2qj8/uxSPpbkAAIA/AACAP2YPOT3I9I286z/4PUAl9b25MsO9MPcAvwAAgD8AAIA/M5mRPAxEfz5NUPi8Y27Dvt1yWD3D9RA8AAAAAAAAAABti4a+KEdAP+PVNb53b9S+mA7LvvKtkL0AAAAAAAAAADOlfTzDnTG63d2Tu6JOtriHGxG7cMgmOAAAgD8AAIA/zYxhO6TUabtFA4i8GnaYPFCNtrw0S4I9AACAPwAAgD8NJaQ9wxltuvaYUjkiaDc0NVniut7odrgAAAAAAACAP4DPtL2vAVo/KoTcPUIF9b6tvxW+kmQ+PgAAAAAAAAAArSQsPgNOvz/bsiM/D9kdvrytcD6boMw+AAAAAAAAAADmXBI9FX8EP3Jn0z16vbu+R1fjPRkYyz0AAAAAAAAAABqB5b281h8/syh5Pn8X6L4xUOi7w05cPgAAAAAAAAAAmu3vvI+OcrrgQC64y64ys4nFy7h9/0o3AACAPwAAgD8a4AC9Uy5NPwZliz3qOcS+SscdvStYzD0AAAAAAAAAAJqRhLt72rC6hpGGOPp2aTNHhuW5Vt6ZtwAAgD8AAIA/TfgCPQ2HXD7Fozy8i9XTvpwjDjx2fnI9AAAAAAAAAABmvvA79sRZumv0ADncv4M04+wcOtscFLgAAIA/AACAP2aCHz1PtVc9LxKOPT5zwr6l8aE92PJQvAAAAAAAAAAAmkxUPXF8Pjz6a4A890OvvgUcij0i04e9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.007616000000000067,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVSRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+G2I8RqNcUCUhpRSlIwBbJRL+IwBdJRHQKnj0z67/XJ1fZQoaAZoCWgPQwh72AsF7HZyQJSGlFKUaBVNCQFoFkdAqePZkupS8HV9lChoBmgJaA9DCLgDdcqj+lBAlIaUUpRoFUucaBZHQKnkAn2qT8p1fZQoaAZoCWgPQwhDc51GGhRxQJSGlFKUaBVL8WgWR0Cp5AhRqGlAdX2UKGgGaAloD0MIIlFoWfeYcECUhpRSlGgVS+ZoFkdAqeQkSZjQRnV9lChoBmgJaA9DCBxEa0VblnBAlIaUUpRoFU0UAWgWR0Cp5Cs5wOvudX2UKGgGaAloD0MI9kArMOTIcUCUhpRSlGgVTUwBaBZHQKnkX0Qsf7t1fZQoaAZoCWgPQwjU78LWbCJwQJSGlFKUaBVNEgFoFkdAqeSxOBUaQ3V9lChoBmgJaA9DCN/98V61dXFAlIaUUpRoFU0WAWgWR0Cp5TlvqC6IdX2UKGgGaAloD0MIdt1bkZidcUCUhpRSlGgVS/xoFkdAqeU/h4t6HHV9lChoBmgJaA9DCEvqBDSRSHFAlIaUUpRoFU0WAWgWR0Cp5YI86mwadX2UKGgGaAloD0MI5MCr5Y7Tc0CUhpRSlGgVS8ZoFkdAqeW7INmUW3V9lChoBmgJaA9DCNHP1OuW6HBAlIaUUpRoFUvMaBZHQKnl5yiEg4h1fZQoaAZoCWgPQwiCcAUUKrtxQJSGlFKUaBVL4mgWR0Cp5e2eQMhHdX2UKGgGaAloD0MIotPzbiz8Q0CUhpRSlGgVS5NoFkdAqeYx9kSVW3V9lChoBmgJaA9DCOIDO/4LAlBAlIaUUpRoFUuFaBZHQKnm5ygf2bp1fZQoaAZoCWgPQwiwcJLmDxBwQJSGlFKUaBVL6GgWR0Cp50VkUbkwdX2UKGgGaAloD0MIms5OBscxb0CUhpRSlGgVS91oFkdAqeeZigCfYnV9lChoBmgJaA9DCPRTHAdeKXJAlIaUUpRoFUvgaBZHQKnnoANoak11fZQoaAZoCWgPQwgGD9O+Od5xQJSGlFKUaBVL9mgWR0Cp580+s5n2dX2UKGgGaAloD0MISyAldq2ecUCUhpRSlGgVTT4BaBZHQKnn5o/zJ6p1fZQoaAZoCWgPQwizB1qB4Up0QJSGlFKUaBVNOgFoFkdAqeg6zzErG3V9lChoBmgJaA9DCFaeQNjphnBAlIaUUpRoFUv2aBZHQKnolHXmNip1fZQoaAZoCWgPQwi5xfzc0AxzQJSGlFKUaBVL1mgWR0Cp6LSo4uK5dX2UKGgGaAloD0MI/z147VKZcUCUhpRSlGgVTQQBaBZHQKnpIrKeTV51fZQoaAZoCWgPQwg/x0eLMy9oQJSGlFKUaBVN6ANoFkdAqek9fJFLFnV9lChoBmgJaA9DCJpbIayG4XFAlIaUUpRoFU1WAWgWR0Cp6V5jpcHGdX2UKGgGaAloD0MIH6FmSJWpckCUhpRSlGgVTTIBaBZHQKnpZScbzbx1fZQoaAZoCWgPQwhJY7SOqkNuQJSGlFKUaBVL6WgWR0Cp6YoxYaHcdX2UKGgGaAloD0MIF/TeGIJxcECUhpRSlGgVS9JoFkdAqemisny/bnV9lChoBmgJaA9DCGHEPgEUtXNAlIaUUpRoFUv+aBZHQKnpr5CWu5l1fZQoaAZoCWgPQwhz2H3HMMRwQJSGlFKUaBVNKQFoFkdAqen/vSc9XHV9lChoBmgJaA9DCJG6nX1lZnFAlIaUUpRoFU0PAWgWR0Cp6kqQzUI+dX2UKGgGaAloD0MIA1slWBzkcUCUhpRSlGgVTTIBaBZHQKnqbZM+NcZ1fZQoaAZoCWgPQwijA5Kwb45mQJSGlFKUaBVN6ANoFkdAqeqKEg4ffXV9lChoBmgJaA9DCDcAGxCh0XFAlIaUUpRoFU0PAWgWR0Cp6q3aJyhjdX2UKGgGaAloD0MIou4DkNpNckCUhpRSlGgVS/poFkdAqesfEZR8+nV9lChoBmgJaA9DCFTGv894eHFAlIaUUpRoFUvzaBZHQKnrQna37UJ1fZQoaAZoCWgPQwjBVDNrKdxyQJSGlFKUaBVL4WgWR0Cp6039rGipdX2UKGgGaAloD0MIuLHZkWrxbUCUhpRSlGgVTWgBaBZHQKnrY4Ia99N1fZQoaAZoCWgPQwjzOXe73l9wQJSGlFKUaBVL3WgWR0Cp63yd4FA3dX2UKGgGaAloD0MIYAZjRKIZc0CUhpRSlGgVTU8BaBZHQKnri+kgwGp1fZQoaAZoCWgPQwhJaTaPw1pxQJSGlFKUaBVNSQFoFkdAqeu5AnlXBHV9lChoBmgJaA9DCIkkehlFp3FAlIaUUpRoFU2+AWgWR0Cp6/CO3lS1dX2UKGgGaAloD0MIGeQuwtSucUCUhpRSlGgVTSEBaBZHQKnr9gflp491fZQoaAZoCWgPQwjlfLH3YjtxQJSGlFKUaBVNEgFoFkdAqexJWBBiTnV9lChoBmgJaA9DCPoK0owFt3BAlIaUUpRoFU0aAWgWR0Cp7Elm4AjqdX2UKGgGaAloD0MIj1N0JBenc0CUhpRSlGgVS+toFkdAqexkFOfukXV9lChoBmgJaA9DCPq2YKmuPG5AlIaUUpRoFUvYaBZHQKnslKXfIjp1fZQoaAZoCWgPQwiKO97kdytxQJSGlFKUaBVL22gWR0Cp7KAY51eTdX2UKGgGaAloD0MIjDGwjuMKU0CUhpRSlGgVS51oFkdAqe0Q00m+kHV9lChoBmgJaA9DCJtUNNb+zm9AlIaUUpRoFUvtaBZHQKntJm5lOGl1fZQoaAZoCWgPQwgsZoS3R+ZyQJSGlFKUaBVNCAFoFkdAqe1GmDUVjHV9lChoBmgJaA9DCL0A++gUeXNAlIaUUpRoFUvKaBZHQKnto4Wk8A91fZQoaAZoCWgPQwh9PsqIC0BzQJSGlFKUaBVNBAFoFkdAqe266J66a3V9lChoBmgJaA9DCHTsoBLXPUlAlIaUUpRoFUudaBZHQKnt29WZJCl1fZQoaAZoCWgPQwhgArfu5sByQJSGlFKUaBVLzWgWR0Cp7mlRgqmTdX2UKGgGaAloD0MINdO9Tur2cUCUhpRSlGgVTREBaBZHQKnusCGvfTF1fZQoaAZoCWgPQwgzUu+pXNxwQJSGlFKUaBVL/mgWR0Cp7sKeK8+SdX2UKGgGaAloD0MI9E9wsWIedECUhpRSlGgVS+toFkdAqe7I4VARkHV9lChoBmgJaA9DCD81XrrJvHJAlIaUUpRoFUv7aBZHQKnu5npSrHV1fZQoaAZoCWgPQwilEp7Qa+9vQJSGlFKUaBVL+WgWR0Cp7wNQj2SMdX2UKGgGaAloD0MIU84Xey93cUCUhpRSlGgVTQcBaBZHQKnvMLeANG51fZQoaAZoCWgPQwjKw0KtaWpNQJSGlFKUaBVLs2gWR0Cp7+bxmTTwdX2UKGgGaAloD0MI4ba28HyAc0CUhpRSlGgVS8doFkdAqfAbvsqrinV9lChoBmgJaA9DCIKo+wCkYHNAlIaUUpRoFUv6aBZHQKnwL1aGHpN1fZQoaAZoCWgPQwhj0Amhw8RxQJSGlFKUaBVL3GgWR0Cp8Dw3gk1NdX2UKGgGaAloD0MIXI5XIPqUcECUhpRSlGgVS9loFkdAqfBauU2UCHV9lChoBmgJaA9DCHxFt14TkHNAlIaUUpRoFUv5aBZHQKnwySwnpjd1fZQoaAZoCWgPQwjmJJS+0HhzQJSGlFKUaBVNIgFoFkdAqfDie2/i53V9lChoBmgJaA9DCJ89l6lJ+DhAlIaUUpRoFUucaBZHQKnw6NCJGfB1fZQoaAZoCWgPQwhhVFInoM5xQJSGlFKUaBVNgwFoFkdAqfEPe3x4IXV9lChoBmgJaA9DCA+4rpgRiVFAlIaUUpRoFUuYaBZHQKnxU9ic5Kh1fZQoaAZoCWgPQwiUZ14Ou/FxQJSGlFKUaBVNEQFoFkdAqfGlxbSql3V9lChoBmgJaA9DCKwahLnd5G5AlIaUUpRoFU0IAWgWR0Cp8f0YsNDudX2UKGgGaAloD0MIyuGTTuTYcUCUhpRSlGgVS9RoFkdAqfIR3zMA3nV9lChoBmgJaA9DCJ2+nq+ZGnJAlIaUUpRoFU1aAWgWR0Cp8iXcgyM2dX2UKGgGaAloD0MI2H3H8Fgdc0CUhpRSlGgVTaIBaBZHQKnyU3Zwn6V1fZQoaAZoCWgPQwjtDikGCGhyQJSGlFKUaBVNCAFoFkdAqfJstXgccXV9lChoBmgJaA9DCCZuFcRAlnJAlIaUUpRoFU0FAWgWR0Cp8r/SH/LldX2UKGgGaAloD0MIfJkoQurhc0CUhpRSlGgVTSgBaBZHQKnzON+b3Gp1fZQoaAZoCWgPQwgkQiPYuHRxQJSGlFKUaBVNJAFoFkdAqfN8UVSGanV9lChoBmgJaA9DCJUNaypLcHFAlIaUUpRoFUv0aBZHQKnzkUi6g/V1fZQoaAZoCWgPQwgl5llJK0lzQJSGlFKUaBVNDwFoFkdAqfOspRXOnnV9lChoBmgJaA9DCE88ZwtIu3JAlIaUUpRoFUvRaBZHQKnz5hCMPz51fZQoaAZoCWgPQwhXXYdqintxQJSGlFKUaBVNPwFoFkdAqfPzkCFK03V9lChoBmgJaA9DCBb7y+6JS3JAlIaUUpRoFU0IAWgWR0Cp9FFgtvn9dX2UKGgGaAloD0MIXfksz8M3cUCUhpRSlGgVS+5oFkdAqfTkxASnL3V9lChoBmgJaA9DCBxg5ju4uXBAlIaUUpRoFUv9aBZHQKn1Br5ZbIN1fZQoaAZoCWgPQwgMQKN0qflyQJSGlFKUaBVNEwFoFkdAqfU2lyimEXV9lChoBmgJaA9DCOymlNcK9HBAlIaUUpRoFUvPaBZHQKn1Zfek56t1fZQoaAZoCWgPQwgLfEW3XmlyQJSGlFKUaBVL3mgWR0Cp9YCTMaCMdX2UKGgGaAloD0MIBW1y+ORWc0CUhpRSlGgVTQgBaBZHQKn1yeV9nbt1fZQoaAZoCWgPQwiiQ+BIoAtSQJSGlFKUaBVLlWgWR0Cp9fKaw2VFdX2UKGgGaAloD0MI1lWBWsxzckCUhpRSlGgVS+ZoFkdAqfYOW6bvw3V9lChoBmgJaA9DCLpnXaPllXBAlIaUUpRoFUvwaBZHQKn2L4ptrKx1fZQoaAZoCWgPQwiiemtgKzhzQJSGlFKUaBVL5WgWR0Cp9sPsiSq3dX2UKGgGaAloD0MIqRWm73VccUCUhpRSlGgVTUwBaBZHQKn3AuB+Wnl1fZQoaAZoCWgPQwgcCMkCJs9xQJSGlFKUaBVL8WgWR0Cp9xCEQGwBdX2UKGgGaAloD0MIkQw5tp7acUCUhpRSlGgVS/9oFkdAqfdRhOP/73VlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 492,
79
  "n_steps": 1024,
80
+ "gamma": 0.9999,
81
  "gae_lambda": 0.98,
82
  "ent_coef": 0.01,
83
  "vf_coef": 0.5,
ppo-LunarLander-v2-onno/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:28b767a762c66ee89b6e03dcfe416ebd8403ab90932346d827e8daf9cb32fc04
3
- size 88057
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bbca68de16509877b299df1d7765d5164c8169c54ce23240243f1314621ca72
3
+ size 87929
ppo-LunarLander-v2-onno/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ebb6333298a2e5fc2b144e46452138864fe1bbe859915c151e693cb329cd32be
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7b93324062a9b4d088cd527f3f6af36bd46fcabb66d3dd3d4b4f3352bfadbe6
3
  size 43201
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 257.5663202173807, "std_reward": 25.998967238787976, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-07T13:48:58.049023"}
 
1
+ {"mean_reward": 275.5261786438411, "std_reward": 17.31647972670307, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-07T14:55:06.714331"}