ostoveland commited on
Commit
8e76524
1 Parent(s): 43e4164

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,530 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:96724
8
+ - loss:Matryoshka2dLoss
9
+ - loss:MatryoshkaLoss
10
+ - loss:TripletLoss
11
+ - loss:MultipleNegativesRankingLoss
12
+ - loss:CoSENTLoss
13
+ base_model: NbAiLab/nb-sbert-base
14
+ widget:
15
+ - source_sentence: installere nytt gulv i låve
16
+ sentences:
17
+ - sparkling av 130 kvm vegg på loft
18
+ - legge nytt gulv i låve
19
+ - plenanlegg
20
+ - source_sentence: Beskjæring av høy hekk
21
+ sentences:
22
+ - Beskjæring/ kapping av tre
23
+ - Fornyelse av fasade
24
+ - Bytting av garasjeport motor
25
+ - source_sentence: Søker takstmann til nyoppusset 3 roms leilighet på Nordnes/sentrum.
26
+ Hjørneleilighet, heis, stor altan på 11m2
27
+ sentences:
28
+ - Montering av nytt kjøkken
29
+ - Installere varmepumpe
30
+ - Tilstandsrapport med verdivurdering, enebolig, Bærum
31
+ - source_sentence: Skadedyrsokntroll
32
+ sentences:
33
+ - asfaltering
34
+ - Oppføring av garasje
35
+ - Veggedyr bekjempelse
36
+ - source_sentence: Støp og fliselegging av gang
37
+ sentences:
38
+ - Reparasjon av råteskader på hus
39
+ - hagearbeid i fellesområder
40
+ - Støp av gulv i kjeller
41
+ pipeline_tag: sentence-similarity
42
+ library_name: sentence-transformers
43
+ ---
44
+
45
+ # SentenceTransformer based on NbAiLab/nb-sbert-base
46
+
47
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [NbAiLab/nb-sbert-base](https://huggingface.co/NbAiLab/nb-sbert-base). It maps sentences & paragraphs to a 64-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
48
+
49
+ ## Model Details
50
+
51
+ ### Model Description
52
+ - **Model Type:** Sentence Transformer
53
+ - **Base model:** [NbAiLab/nb-sbert-base](https://huggingface.co/NbAiLab/nb-sbert-base) <!-- at revision 26567595914b5f4b04ec871b5814db989ca261b9 -->
54
+ - **Maximum Sequence Length:** 75 tokens
55
+ - **Output Dimensionality:** 64 dimensions
56
+ - **Similarity Function:** Cosine Similarity
57
+ <!-- - **Training Dataset:** Unknown -->
58
+ <!-- - **Language:** Unknown -->
59
+ <!-- - **License:** Unknown -->
60
+
61
+ ### Model Sources
62
+
63
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
64
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
65
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
66
+
67
+ ### Full Model Architecture
68
+
69
+ ```
70
+ SentenceTransformer(
71
+ (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
72
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
73
+ )
74
+ ```
75
+
76
+ ## Usage
77
+
78
+ ### Direct Usage (Sentence Transformers)
79
+
80
+ First install the Sentence Transformers library:
81
+
82
+ ```bash
83
+ pip install -U sentence-transformers
84
+ ```
85
+
86
+ Then you can load this model and run inference.
87
+ ```python
88
+ from sentence_transformers import SentenceTransformer
89
+
90
+ # Download from the 🤗 Hub
91
+ model = SentenceTransformer("ostoveland/SBertBaseMittanbudver3")
92
+ # Run inference
93
+ sentences = [
94
+ 'Støp og fliselegging av gang',
95
+ 'Støp av gulv i kjeller',
96
+ 'Reparasjon av råteskader på hus',
97
+ ]
98
+ embeddings = model.encode(sentences)
99
+ print(embeddings.shape)
100
+ # [3, 64]
101
+
102
+ # Get the similarity scores for the embeddings
103
+ similarities = model.similarity(embeddings, embeddings)
104
+ print(similarities.shape)
105
+ # [3, 3]
106
+ ```
107
+
108
+ <!--
109
+ ### Direct Usage (Transformers)
110
+
111
+ <details><summary>Click to see the direct usage in Transformers</summary>
112
+
113
+ </details>
114
+ -->
115
+
116
+ <!--
117
+ ### Downstream Usage (Sentence Transformers)
118
+
119
+ You can finetune this model on your own dataset.
120
+
121
+ <details><summary>Click to expand</summary>
122
+
123
+ </details>
124
+ -->
125
+
126
+ <!--
127
+ ### Out-of-Scope Use
128
+
129
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
130
+ -->
131
+
132
+ <!--
133
+ ## Bias, Risks and Limitations
134
+
135
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
136
+ -->
137
+
138
+ <!--
139
+ ### Recommendations
140
+
141
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
142
+ -->
143
+
144
+ ## Training Details
145
+
146
+ ### Training Datasets
147
+
148
+ #### Unnamed Dataset
149
+
150
+
151
+ * Size: 55,426 training samples
152
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
153
+ * Approximate statistics based on the first 1000 samples:
154
+ | | sentence_0 | sentence_1 | sentence_2 |
155
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
156
+ | type | string | string | string |
157
+ | details | <ul><li>min: 3 tokens</li><li>mean: 11.59 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.69 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 10.44 tokens</li><li>max: 39 tokens</li></ul> |
158
+ * Samples:
159
+ | sentence_0 | sentence_1 | sentence_2 |
160
+ |:------------------------------------------------------------------|:-----------------------------------------------------------------|:------------------------------------------------------|
161
+ | <code>Vaskerom</code> | <code>Ønsker tilbud på legging av våtromsbelegg lite bad:</code> | <code>Verdivurdering av 177 kvm stor enebolig.</code> |
162
+ | <code>Bytte lås i leilighet i Obos borettslag, Galgeberg. </code> | <code>Bytte postkasselås</code> | <code>Helsparkling av betongvegger med tapet</code> |
163
+ | <code>Legging av mikrosement</code> | <code>Ønsker tilbud på mikrosement</code> | <code>Betongsaging - 2 nye utvendige vinduer</code> |
164
+ * Loss: [<code>Matryoshka2dLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshka2dloss) with these parameters:
165
+ ```json
166
+ {
167
+ "loss": "TripletLoss",
168
+ "n_layers_per_step": 1,
169
+ "last_layer_weight": 1.0,
170
+ "prior_layers_weight": 1.0,
171
+ "kl_div_weight": 1.0,
172
+ "kl_temperature": 0.3,
173
+ "matryoshka_dims": [
174
+ 768,
175
+ 512,
176
+ 256,
177
+ 128,
178
+ 64
179
+ ],
180
+ "matryoshka_weights": [
181
+ 1,
182
+ 1,
183
+ 1,
184
+ 1,
185
+ 1
186
+ ],
187
+ "n_dims_per_step": 1
188
+ }
189
+ ```
190
+
191
+ #### Unnamed Dataset
192
+
193
+
194
+ * Size: 22,563 training samples
195
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
196
+ * Approximate statistics based on the first 1000 samples:
197
+ | | sentence_0 | sentence_1 |
198
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
199
+ | type | string | string |
200
+ | details | <ul><li>min: 4 tokens</li><li>mean: 10.79 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.17 tokens</li><li>max: 27 tokens</li></ul> |
201
+ * Samples:
202
+ | sentence_0 | sentence_1 |
203
+ |:----------------------------------------------------|:--------------------------------------------|
204
+ | <code>Trefelling - 1 stor gran og en osp</code> | <code>trefelling av stor gran og osp</code> |
205
+ | <code>Bærebjelker - vurdering</code> | <code>sjekk av bærebjelker</code> |
206
+ | <code>Mindre graveoppdrag - 30m2 x 40cm dypt</code> | <code>mindre gravearbeid</code> |
207
+ * Loss: [<code>Matryoshka2dLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshka2dloss) with these parameters:
208
+ ```json
209
+ {
210
+ "loss": "MultipleNegativesRankingLoss",
211
+ "n_layers_per_step": 1,
212
+ "last_layer_weight": 1.0,
213
+ "prior_layers_weight": 1.0,
214
+ "kl_div_weight": 1.0,
215
+ "kl_temperature": 0.3,
216
+ "matryoshka_dims": [
217
+ 768,
218
+ 512,
219
+ 256,
220
+ 128,
221
+ 64
222
+ ],
223
+ "matryoshka_weights": [
224
+ 1,
225
+ 1,
226
+ 1,
227
+ 1,
228
+ 1
229
+ ],
230
+ "n_dims_per_step": 1
231
+ }
232
+ ```
233
+
234
+ #### Unnamed Dataset
235
+
236
+
237
+ * Size: 18,735 training samples
238
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
239
+ * Approximate statistics based on the first 1000 samples:
240
+ | | sentence_0 | sentence_1 | label |
241
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------|
242
+ | type | string | string | float |
243
+ | details | <ul><li>min: 4 tokens</li><li>mean: 13.64 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.56 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 0.05</li><li>mean: 0.5</li><li>max: 0.95</li></ul> |
244
+ * Samples:
245
+ | sentence_0 | sentence_1 | label |
246
+ |:-----------------------------------------------|:-----------------------------------------------|:------------------|
247
+ | <code>Pusse murvegg</code> | <code>Pusse opp vegg</code> | <code>0.75</code> |
248
+ | <code>Flyttevask av leilighet på 35 kvm</code> | <code>Flyttevask av leilighet på 40 kvm</code> | <code>0.95</code> |
249
+ | <code>Flis 30x 60 - 40m2</code> | <code>Flislegging av gulv, 40m2</code> | <code>0.75</code> |
250
+ * Loss: [<code>Matryoshka2dLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshka2dloss) with these parameters:
251
+ ```json
252
+ {
253
+ "loss": "CoSENTLoss",
254
+ "n_layers_per_step": 1,
255
+ "last_layer_weight": 1.0,
256
+ "prior_layers_weight": 1.0,
257
+ "kl_div_weight": 1.0,
258
+ "kl_temperature": 0.3,
259
+ "matryoshka_dims": [
260
+ 768,
261
+ 512,
262
+ 256,
263
+ 128,
264
+ 64
265
+ ],
266
+ "matryoshka_weights": [
267
+ 1,
268
+ 1,
269
+ 1,
270
+ 1,
271
+ 1
272
+ ],
273
+ "n_dims_per_step": 1
274
+ }
275
+ ```
276
+
277
+ ### Training Hyperparameters
278
+ #### Non-Default Hyperparameters
279
+
280
+ - `per_device_train_batch_size`: 32
281
+ - `per_device_eval_batch_size`: 32
282
+ - `num_train_epochs`: 4
283
+ - `multi_dataset_batch_sampler`: round_robin
284
+
285
+ #### All Hyperparameters
286
+ <details><summary>Click to expand</summary>
287
+
288
+ - `overwrite_output_dir`: False
289
+ - `do_predict`: False
290
+ - `eval_strategy`: no
291
+ - `prediction_loss_only`: True
292
+ - `per_device_train_batch_size`: 32
293
+ - `per_device_eval_batch_size`: 32
294
+ - `per_gpu_train_batch_size`: None
295
+ - `per_gpu_eval_batch_size`: None
296
+ - `gradient_accumulation_steps`: 1
297
+ - `eval_accumulation_steps`: None
298
+ - `torch_empty_cache_steps`: None
299
+ - `learning_rate`: 5e-05
300
+ - `weight_decay`: 0.0
301
+ - `adam_beta1`: 0.9
302
+ - `adam_beta2`: 0.999
303
+ - `adam_epsilon`: 1e-08
304
+ - `max_grad_norm`: 1
305
+ - `num_train_epochs`: 4
306
+ - `max_steps`: -1
307
+ - `lr_scheduler_type`: linear
308
+ - `lr_scheduler_kwargs`: {}
309
+ - `warmup_ratio`: 0.0
310
+ - `warmup_steps`: 0
311
+ - `log_level`: passive
312
+ - `log_level_replica`: warning
313
+ - `log_on_each_node`: True
314
+ - `logging_nan_inf_filter`: True
315
+ - `save_safetensors`: True
316
+ - `save_on_each_node`: False
317
+ - `save_only_model`: False
318
+ - `restore_callback_states_from_checkpoint`: False
319
+ - `no_cuda`: False
320
+ - `use_cpu`: False
321
+ - `use_mps_device`: False
322
+ - `seed`: 42
323
+ - `data_seed`: None
324
+ - `jit_mode_eval`: False
325
+ - `use_ipex`: False
326
+ - `bf16`: False
327
+ - `fp16`: False
328
+ - `fp16_opt_level`: O1
329
+ - `half_precision_backend`: auto
330
+ - `bf16_full_eval`: False
331
+ - `fp16_full_eval`: False
332
+ - `tf32`: None
333
+ - `local_rank`: 0
334
+ - `ddp_backend`: None
335
+ - `tpu_num_cores`: None
336
+ - `tpu_metrics_debug`: False
337
+ - `debug`: []
338
+ - `dataloader_drop_last`: False
339
+ - `dataloader_num_workers`: 0
340
+ - `dataloader_prefetch_factor`: None
341
+ - `past_index`: -1
342
+ - `disable_tqdm`: False
343
+ - `remove_unused_columns`: True
344
+ - `label_names`: None
345
+ - `load_best_model_at_end`: False
346
+ - `ignore_data_skip`: False
347
+ - `fsdp`: []
348
+ - `fsdp_min_num_params`: 0
349
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
350
+ - `fsdp_transformer_layer_cls_to_wrap`: None
351
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
352
+ - `deepspeed`: None
353
+ - `label_smoothing_factor`: 0.0
354
+ - `optim`: adamw_torch
355
+ - `optim_args`: None
356
+ - `adafactor`: False
357
+ - `group_by_length`: False
358
+ - `length_column_name`: length
359
+ - `ddp_find_unused_parameters`: None
360
+ - `ddp_bucket_cap_mb`: None
361
+ - `ddp_broadcast_buffers`: False
362
+ - `dataloader_pin_memory`: True
363
+ - `dataloader_persistent_workers`: False
364
+ - `skip_memory_metrics`: True
365
+ - `use_legacy_prediction_loop`: False
366
+ - `push_to_hub`: False
367
+ - `resume_from_checkpoint`: None
368
+ - `hub_model_id`: None
369
+ - `hub_strategy`: every_save
370
+ - `hub_private_repo`: False
371
+ - `hub_always_push`: False
372
+ - `gradient_checkpointing`: False
373
+ - `gradient_checkpointing_kwargs`: None
374
+ - `include_inputs_for_metrics`: False
375
+ - `include_for_metrics`: []
376
+ - `eval_do_concat_batches`: True
377
+ - `fp16_backend`: auto
378
+ - `push_to_hub_model_id`: None
379
+ - `push_to_hub_organization`: None
380
+ - `mp_parameters`:
381
+ - `auto_find_batch_size`: False
382
+ - `full_determinism`: False
383
+ - `torchdynamo`: None
384
+ - `ray_scope`: last
385
+ - `ddp_timeout`: 1800
386
+ - `torch_compile`: False
387
+ - `torch_compile_backend`: None
388
+ - `torch_compile_mode`: None
389
+ - `dispatch_batches`: None
390
+ - `split_batches`: None
391
+ - `include_tokens_per_second`: False
392
+ - `include_num_input_tokens_seen`: False
393
+ - `neftune_noise_alpha`: None
394
+ - `optim_target_modules`: None
395
+ - `batch_eval_metrics`: False
396
+ - `eval_on_start`: False
397
+ - `use_liger_kernel`: False
398
+ - `eval_use_gather_object`: False
399
+ - `average_tokens_across_devices`: False
400
+ - `prompts`: None
401
+ - `batch_sampler`: batch_sampler
402
+ - `multi_dataset_batch_sampler`: round_robin
403
+
404
+ </details>
405
+
406
+ ### Training Logs
407
+ | Epoch | Step | Training Loss |
408
+ |:------:|:----:|:-------------:|
409
+ | 0.2844 | 500 | 6.7584 |
410
+ | 0.5688 | 1000 | 7.3305 |
411
+ | 0.8532 | 1500 | 7.3915 |
412
+ | 1.0006 | 1759 | - |
413
+ | 1.1371 | 2000 | 7.4073 |
414
+ | 1.4215 | 2500 | 7.0864 |
415
+ | 1.7059 | 3000 | 6.9577 |
416
+ | 1.9903 | 3500 | 7.0965 |
417
+ | 2.0006 | 3518 | - |
418
+ | 2.2742 | 4000 | 6.9915 |
419
+ | 2.5586 | 4500 | 6.9164 |
420
+ | 2.8430 | 5000 | 6.8257 |
421
+ | 3.0006 | 5277 | - |
422
+ | 3.1268 | 5500 | 7.0359 |
423
+ | 3.4113 | 6000 | 6.9761 |
424
+ | 3.6957 | 6500 | 6.9392 |
425
+ | 3.9801 | 7000 | 6.8352 |
426
+ | 3.9983 | 7032 | - |
427
+
428
+
429
+ ### Framework Versions
430
+ - Python: 3.10.12
431
+ - Sentence Transformers: 3.3.1
432
+ - Transformers: 4.46.3
433
+ - PyTorch: 2.5.1+cu121
434
+ - Accelerate: 1.1.1
435
+ - Datasets: 3.1.0
436
+ - Tokenizers: 0.20.3
437
+
438
+ ## Citation
439
+
440
+ ### BibTeX
441
+
442
+ #### Sentence Transformers
443
+ ```bibtex
444
+ @inproceedings{reimers-2019-sentence-bert,
445
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
446
+ author = "Reimers, Nils and Gurevych, Iryna",
447
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
448
+ month = "11",
449
+ year = "2019",
450
+ publisher = "Association for Computational Linguistics",
451
+ url = "https://arxiv.org/abs/1908.10084",
452
+ }
453
+ ```
454
+
455
+ #### Matryoshka2dLoss
456
+ ```bibtex
457
+ @misc{li20242d,
458
+ title={2D Matryoshka Sentence Embeddings},
459
+ author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
460
+ year={2024},
461
+ eprint={2402.14776},
462
+ archivePrefix={arXiv},
463
+ primaryClass={cs.CL}
464
+ }
465
+ ```
466
+
467
+ #### MatryoshkaLoss
468
+ ```bibtex
469
+ @misc{kusupati2024matryoshka,
470
+ title={Matryoshka Representation Learning},
471
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
472
+ year={2024},
473
+ eprint={2205.13147},
474
+ archivePrefix={arXiv},
475
+ primaryClass={cs.LG}
476
+ }
477
+ ```
478
+
479
+ #### TripletLoss
480
+ ```bibtex
481
+ @misc{hermans2017defense,
482
+ title={In Defense of the Triplet Loss for Person Re-Identification},
483
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
484
+ year={2017},
485
+ eprint={1703.07737},
486
+ archivePrefix={arXiv},
487
+ primaryClass={cs.CV}
488
+ }
489
+ ```
490
+
491
+ #### MultipleNegativesRankingLoss
492
+ ```bibtex
493
+ @misc{henderson2017efficient,
494
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
495
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
496
+ year={2017},
497
+ eprint={1705.00652},
498
+ archivePrefix={arXiv},
499
+ primaryClass={cs.CL}
500
+ }
501
+ ```
502
+
503
+ #### CoSENTLoss
504
+ ```bibtex
505
+ @online{kexuefm-8847,
506
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
507
+ author={Su Jianlin},
508
+ year={2022},
509
+ month={Jan},
510
+ url={https://kexue.fm/archives/8847},
511
+ }
512
+ ```
513
+
514
+ <!--
515
+ ## Glossary
516
+
517
+ *Clearly define terms in order to be accessible across audiences.*
518
+ -->
519
+
520
+ <!--
521
+ ## Model Card Authors
522
+
523
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
524
+ -->
525
+
526
+ <!--
527
+ ## Model Card Contact
528
+
529
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
530
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "NbAiLab/nb-sbert-base",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-12,
16
+ "max_position_embeddings": 512,
17
+ "model_type": "bert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.46.3",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 119547
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.3",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a03b357c9323ccfb4d207f0ad09feed83b2286be30978de580108e51d6706a8
3
+ size 711480934
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 75,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 75,
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff