---
base_model: intfloat/multilingual-e5-base
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2400
- loss:TripletLoss
- loss:MultipleNegativesRankingLoss
- loss:CoSENTLoss
widget:
- source_sentence: oppgradering av sikringsskap med nye sikringer
sentences:
- 'query: pipearbeid i kjeller'
- 'query: utskifting av sikringer i sikringsskap'
- 'query: arkitekttegning av tilbygg'
- source_sentence: Renovere soverom og stue
sentences:
- Utvidelse av enebolig
- Male soverom og stue
- Pusse opp soverom og stue
- source_sentence: Fjerne vegg-til-vegg teppe, mugg under teppet og legge parkett
sentences:
- Legge nytt parkettgulv
- Rengjøre tepper
- Installere kjøkkenvifte
- source_sentence: Riving av gammelt kjøkken og montering av nytt kjøkken
sentences:
- Installere automatsikringer
- Pusse opp kjøkken
- Bytte kjøkken
- source_sentence: Stålrør i pipe
sentences:
- Tette lekkasje i pipe
- Asfaltering av oppkjørsel
- Gravearbeid i hagen
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-base
results:
- task:
type: triplet
name: Triplet
dataset:
name: test triplet evaluation
type: test-triplet-evaluation
metrics:
- type: cosine_accuracy
value: 0.9140239605355884
name: Cosine Accuracy
- type: dot_accuracy
value: 0.08597603946441155
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9126145172656801
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9140239605355884
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9140239605355884
name: Max Accuracy
---
# SentenceTransformer based on intfloat/multilingual-e5-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ostoveland/test2")
# Run inference
sentences = [
'Stålrør i pipe',
'Tette lekkasje i pipe',
'Gravearbeid i hagen',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Triplet
* Dataset: `test-triplet-evaluation`
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:----------|
| cosine_accuracy | 0.914 |
| dot_accuracy | 0.086 |
| manhattan_accuracy | 0.9126 |
| euclidean_accuracy | 0.914 |
| **max_accuracy** | **0.914** |
## Training Details
### Training Datasets
#### Unnamed Dataset
* Size: 800 training samples
* Columns: sentence_0
, sentence_1
, and sentence_2
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | sentence_2 |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details |
søknad om dispensasjon fra reguleringsformål
| Søknad om byggetillatelse
| Søknad om bruksendring
|
| Mikrosement på bad
| Påføring av mikrosement i baderom
| Flislegging på bad
|
| Garasje
| Bygge garasje
| Renovere garasje
|
* Loss: [TripletLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
#### Unnamed Dataset
* Size: 800 training samples
* Columns: sentence_0
and sentence_1
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | Riving av betongtrapp
| query: demontere betongtrapp
|
| vurdering av bærebjelker
| query: inspeksjon av bærebjelker
|
| bytte av skrusikringer i sikringsskap
| query: oppgradering av sikringsskap med nye sikringer
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### Unnamed Dataset
* Size: 800 training samples
* Columns: sentence_0
, sentence_1
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------|
| type | string | string | float |
| details | Reparere skader av rekkeverk (metallplater) på en balkong
| Installere nytt balkongrekkverk
| 0.35
|
| Vannbåren varme - ettermontering
| Oppgradering til vannbåren varme
| 0.75
|
| Pusse pipemur
| Maling av peis
| 0.15
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 1
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters