--- language: en license: mit library_name: pytorch model-index: - name: baseline results: - task: type: Geoscore dataset: name: OSV-5M type: geolocation metrics: - type: geoscore value: 3361 - task: type: Haversine Distance dataset: name: OSV-5M type: geolocation metrics: - type: haversine distance value: 1814 - task: type: Country classification dataset: name: OSV-5M type: geolocation metrics: - type: country accuracy value: 68 - task: type: Region classification dataset: name: OSV-5M type: geolocation metrics: - type: region accuracy value: 39.4 - task: type: Area classification dataset: name: OSV-5M type: geolocation metrics: - type: area accuracy value: 10.3 - task: type: City classification dataset: name: OSV-5M type: geolocation metrics: - type: city accuracy value: 5.9 --- # Geolocation baseline on OSV-5M More details to be released upon publication (\). Everything is based on the OSV-5M benchmark dataset. ## Model Details \ ### Model Description \ - **Developed by:** \ - **License:** mit - **Based on hf models:** \ ### Model Sources [optional] - **Repository:** \ - **Paper:** \ - **Human Evaluation** \ ## Usage The main purpose of this model is academic usage. We provide a hugging face repo both to facilitate accessing and run inference to our model. ### Example usage First download the repo `!git clone `. Then from any script whose `cwd` is the repos main directory (`cd `) run: ```python from PIL import Image from models.huggingface import Geolocalizer geoloc = Geolocalizer.from_pretrained('osv5m/baseline') img = Image.open('.media/examples/img1.jpeg') x = geoloc.transform(img).unsqueeze(0) # transform the image using our dedicated transformer gps = geolocalizer(x) # B, 2 (lat, lon - tensor in rad) ```