{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d0ef9be5fc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d0ef9be6050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d0ef9be60e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d0ef9be6170>", "_build": "<function ActorCriticPolicy._build at 0x7d0ef9be6200>", "forward": "<function ActorCriticPolicy.forward at 0x7d0ef9be6290>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d0ef9be6320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d0ef9be63b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d0ef9be6440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d0ef9be64d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d0ef9be6560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d0ef9be65f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d0ef9b8ce00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723767453968142700, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADrJ0D6K3Us/ZAcxvgJUqb4v3x0+XjhsvQAAAAAAAAAAEwcGvtJsvj49nIU9vPNFvi8zh7z4wzQ+AAAAAAAAAABz8s+9j94Quu3fbzzHlqgyIPPAurIS/zMAAIA/AAAAAPOipT325DC6Hip2uoHXubXTMuE6tKiQOQAAgD8AAAAAWsvnvXcWjz/WqIa+5XWlvrpIUr6Is+K9AAAAAAAAAADNxjI844vSPka7gb0rjp6+Uv3/vEWPFz0AAAAAAAAAAJo947unmLs/wHLvvf9QrT5BUgE8K3rWPAAAAAAAAAAAZmePPBTW1rqRzZO76VKFPKqkCTy1B2i9AACAPwAAgD+AVhO9m/OWPSIMBDtRnV6+IDcrPZU4Cb0AAAAAAAAAAObmEr1vg8o+XLKBPJnfgL5LlLs8WQuBPQAAAAAAAAAAzW5nvI4yzD0ynmu998w+vm5Ynrxhnrk8AAAAAAAAAAAmSWM+RCSMP4C0HT6OHK++gQJdPgYRxr0AAAAAAAAAADMgmr0p8Di6An0bujMnR7OQZ9e6w4Y1OQAAAAAAAIA/mi8DPnTdkj6TRpC9JbNOvsxrPz0gT5G9AAAAAAAAAACAxsg9Yk5aPtKyH74mqIq+DUV/vXhOqD0AAAAAAAAAAM2Maz7vlGU/D/4IPoEj2b4HCVs+P1okvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBB2g3974WMAWyUTVoBjAF0lEdAkmDB24d6s3V9lChoBkdAcOeEpAlfJGgHTS0BaAhHQJJhIcPvrnl1fZQoaAZHQHG1OvhZQpFoB00jAWgIR0CSYbMB6rvLdX2UKGgGR0BvAQk7fYSQaAdNawFoCEdAkmMOSbH6uXV9lChoBkdAcRPXP7el9GgHTSQBaAhHQJJjfBP9DQZ1fZQoaAZHQHED5FXq7iBoB00zAWgIR0CSY8RIjGDMdX2UKGgGR0BwKZ0zTF2naAdNKgFoCEdAkmSLlzU7S3V9lChoBkdAcB/fpUxVQ2gHTSsBaAhHQJJk5tCRfWt1fZQoaAZHQG8C+NLlFMJoB00zAWgIR0CSZP8Aq/dqdX2UKGgGR0BwALDEWIoFaAdNMgFoCEdAkmWDy8SPEXV9lChoBkdAcwuC3w1BMWgHTWIBaAhHQJJl/fyf+S91fZQoaAZHQG+G5PuXu3NoB009AWgIR0CSZuSG8EmqdX2UKGgGR0ByBf9hqj8DaAdNXwFoCEdAkmcC8zyjHnV9lChoBkdAcNcmthd+omgHTTwBaAhHQJJn6pzcRDl1fZQoaAZHQHHJ3lOoHcFoB02FAWgIR0CSaH4n4O+adX2UKGgGR0Bwlv0Dlo12aAdNJwFoCEdAkmivS2H+InV9lChoBkdAchdkQwsXi2gHTQcBaAhHQJJo3G6wt8N1fZQoaAZHQHBKry1/lQxoB01YAWgIR0CSa69MK1G9dX2UKGgGR0BuSN/QSi/PaAdNRwFoCEdAkmvC5Zr57HV9lChoBkdAcLEYnOSntWgHTUgBaAhHQJJtNqN6w+t1fZQoaAZHQHDeZA+pwS9oB007AWgIR0CSbTO+qR2bdX2UKGgGR0ByqKEXcgyNaAdNEQFoCEdAkm1gbuMMqnV9lChoBkdAbL070WdmQWgHTUABaAhHQJJtrdcjZ+R1fZQoaAZHQHIL2vfTCtRoB00vAWgIR0CSbetv4ubrdX2UKGgGR0BxbPW/ag27aAdNTgFoCEdAkm9oAbQ1JnV9lChoBkdAcBPbc45tFmgHTTQBaAhHQJJvzKB/Zuh1fZQoaAZHQHBCPVAiV0NoB00VAWgIR0CScOmq5sj3dX2UKGgGR0Bx8dLcsUZfaAdNcAFoCEdAknFFaW5Yo3V9lChoBkdAbp1yH2ys0mgHTUUBaAhHQJJxWGEf1Yh1fZQoaAZHQHCL2/etSydoB00ZAWgIR0CSceqlxffGdX2UKGgGR0ByK1qqOtGNaAdNIQFoCEdAknH2hRIjGHV9lChoBkdAcBcDhLoOhGgHTWYBaAhHQJJ0q1qnFYN1fZQoaAZHQHJuT0HyEtdoB021AWgIR0CSdTbILgGbdX2UKGgGR0By1IIToMa1aAdNHQFoCEdAknV3U6PsA3V9lChoBkdAcDLgQ6IWQGgHTS0BaAhHQJJ16UNayKN1fZQoaAZHQHD/61gH/tJoB00OAWgIR0CSdk3M6ij+dX2UKGgGR0Bwe1KqXF98aAdNQwFoCEdAkngqz/p+t3V9lChoBkdAbzXdBSk0rWgHTVwBaAhHQJJ41t2s7uF1fZQoaAZHQHDhr/wRXfZoB01KAWgIR0CSePCz1K5DdX2UKGgGR0BxWVzJZGKAaAdNLQFoCEdAknmpjUd7wHV9lChoBkdAcKS8sMAmzGgHTTkBaAhHQJJ5sZwXIlt1fZQoaAZHQHJcZvgm7atoB00tAWgIR0CSeqhX8wYcdX2UKGgGR0ByijRTjvNNaAdNGgFoCEdAknsMzdk8R3V9lChoBkdAcU/DFqBVdWgHTS8BaAhHQJJ7p/RVp9J1fZQoaAZHQHLJUnb7CSBoB02sAWgIR0CSe6/jKgZkdX2UKGgGR0BPUc63iJfqaAdL8mgIR0CSkQwIt16mdX2UKGgGR0BulI6ySmqHaAdNbwFoCEdAkpFS5mRNh3V9lChoBkdAcm6CFbmlqWgHTXYBaAhHQJKReIbfgrJ1fZQoaAZHQGwwpmNBF/hoB00dAWgIR0CSkniobXHzdX2UKGgGR0BwbOvyLAHnaAdNLQFoCEdAkpNa3EyckXV9lChoBkdAbU0SamXPaGgHTVoBaAhHQJKTp3W4EwF1fZQoaAZHQHDeISYgJTloB00EAWgIR0CSlOw0fozOdX2UKGgGR0BvNmCI1tO3aAdNWgFoCEdAkpUyhN/OMXV9lChoBke/2r9AHE/B32gHS+loCEdAkpXyflIVd3V9lChoBkdAcrPD0UXYUWgHTSEBaAhHQJKWuLKmsNl1fZQoaAZHQHCp+6d1+y9oB00nAWgIR0CSluHrQgLadX2UKGgGR0BxpPg2qDK6aAdNQQFoCEdAkpbyUC7sfXV9lChoBkdAa/hfQa72+WgHTXUBaAhHQJKX0vCdjG11fZQoaAZHQHGmBcNYr8RoB00LAWgIR0CSmAXr+o9+dX2UKGgGR0A88kZJkGzKaAdL5mgIR0CSmAZqEeySdX2UKGgGR0BwaIuqWC2+aAdNLQFoCEdAkphn3L3bmHV9lChoBkdAcoUEgntv42gHTS0BaAhHQJKaNbKRuCR1fZQoaAZHQHE4nfQ8fV9oB01kAWgIR0CSmoRmseXBdX2UKGgGR0Bw6RyR0U48aAdNGAFoCEdAkprcwYcebXV9lChoBkdAcFdTsIE8rGgHTU4BaAhHQJKbW66J66d1fZQoaAZHQFDOnLq2SdRoB0vFaAhHQJKbuSyMUAV1fZQoaAZHQHA0laW5Yo1oB00tAWgIR0CSnJg7o0Q9dX2UKGgGR0BQ84pH7P6baAdLx2gIR0CSnJ5a/yoXdX2UKGgGR0BxNMqrilzmaAdNQgFoCEdAkpzubd8ArHV9lChoBkdAcfda5PM0QGgHTSkBaAhHQJKdmTQmeDp1fZQoaAZHQHKpAYLsrupoB0vfaAhHQJKeVTS9du51fZQoaAZHQG5Qg80UGmloB01AAWgIR0CSnn8YQ8OkdX2UKGgGR0BxZ2tuDSPVaAdNGQFoCEdAkp7qHwgDBHV9lChoBkdAcXrTpgTh52gHTSABaAhHQJKf6Eh7mdR1fZQoaAZHQHBmZ8a4tpVoB01cAWgIR0CSoJBGx2SudX2UKGgGR0ByeEGyHEdeaAdNLQFoCEdAkqDZI6KceHV9lChoBkdAcnLoKlYU4GgHTVoBaAhHQJKhtL5AQg91fZQoaAZHQHF1rROUMXtoB00TAWgIR0CSof8jzI3jdX2UKGgGR0BrlVh5Pdl/aAdNAgFoCEdAkqIcxsVLz3V9lChoBkdAcTsR5C4SYmgHTQoBaAhHQJKi09SuQp51fZQoaAZHQEHsXWOIZZVoB0vXaAhHQJKi7gjyFwl1fZQoaAZHQHBhh+vyLAJoB00uAWgIR0CSowqYqoZRdX2UKGgGR0BwpJ37k4m1aAdNEAFoCEdAkqNS+10DEHV9lChoBkdAQR7tCzC1qmgHTQABaAhHQJKkw4n4O+Z1fZQoaAZHQHC72ETQE6loB00yAWgIR0CSpSZ3s5XEdX2UKGgGR0ByaxU5uIhyaAdNQQFoCEdAkqWVAAyVOnV9lChoBkdAbjXzK9wm3WgHTQ0BaAhHQJKl/tLL6k91fZQoaAZHQDkQ9t/FzdVoB0vcaAhHQJKmGEpRXOp1fZQoaAZHQG/Y1wgkkbBoB00EAWgIR0CSp/6eoUBXdX2UKGgGR0Bvi6Xv6TGHaAdNRAFoCEdAkqgf863iJnV9lChoBkdAcnMsYEW69WgHTQEBaAhHQJKpK+0w8GN1fZQoaAZHQHKgEW69TP1oB0v7aAhHQJKpRWPtD2J1fZQoaAZHQDz/CXQdCE9oB0vdaAhHQJKpW/IsAed1fZQoaAZHQHDkXoHLRrtoB00mAWgIR0CSqWIUJv5ydX2UKGgGR0BP+FWn0kGBaAdL62gIR0CSqaJcPe54dX2UKGgGR0BxGfWlMyrQaAdNNAFoCEdAkqr1sYVIqnV9lChoBkdAcmnXEqDsdGgHTdwBaAhHQJKr5jCpFTh1fZQoaAZHQHFB7UkOZstoB002AWgIR0CSrATFERapdX2UKGgGR0BzpBz7uUliaAdNSQFoCEdAkqzbRv3rU3V9lChoBkdAcR4Ef1YhdWgHTRQBaAhHQJKto0rK/211ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |