---
base_model: sentence-transformers/all-MiniLM-L6-v2
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4505
- loss:OnlineContrastiveLoss
widget:
- source_sentence: Greektown on the Danforth
sentences:
- Gregarious
- Gregarious
- Gregarious
- source_sentence: Temple of the Emerald Buddha (Wat Phra Kaew)
sentences:
- Respectful
- Uninterested
- Respectful
- source_sentence: Natureland Liat Towers
sentences:
- Careless
- Disinterested
- Aggressive
- source_sentence: Old Town
sentences:
- Reserved
- Laid-back
- Callous
- source_sentence: Khaosan Road
sentences:
- Adventurous
- Adventurous
- Reserved
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.9573712255772646
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8162947297096252
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.958041958041958
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8131216764450073
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9681978798586572
name: Cosine Precision
- type: cosine_recall
value: 0.9480968858131488
name: Cosine Recall
- type: cosine_ap
value: 0.9909492524224418
name: Cosine Ap
- type: dot_accuracy
value: 0.9573712255772646
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8162947297096252
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.958041958041958
name: Dot F1
- type: dot_f1_threshold
value: 0.8131217360496521
name: Dot F1 Threshold
- type: dot_precision
value: 0.9681978798586572
name: Dot Precision
- type: dot_recall
value: 0.9480968858131488
name: Dot Recall
- type: dot_ap
value: 0.9909492524224418
name: Dot Ap
- type: manhattan_accuracy
value: 0.9609236234458259
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.564813613891602
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9619377162629758
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.564813613891602
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.9619377162629758
name: Manhattan Precision
- type: manhattan_recall
value: 0.9619377162629758
name: Manhattan Recall
- type: manhattan_ap
value: 0.9908734681022205
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9573712255772646
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.6061439514160156
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.958041958041958
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6113559007644653
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9681978798586572
name: Euclidean Precision
- type: euclidean_recall
value: 0.9480968858131488
name: Euclidean Recall
- type: euclidean_ap
value: 0.9909492524224418
name: Euclidean Ap
- type: max_accuracy
value: 0.9609236234458259
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.564813613891602
name: Max Accuracy Threshold
- type: max_f1
value: 0.9619377162629758
name: Max F1
- type: max_f1_threshold
value: 9.564813613891602
name: Max F1 Threshold
- type: max_precision
value: 0.9681978798586572
name: Max Precision
- type: max_recall
value: 0.9619377162629758
name: Max Recall
- type: max_ap
value: 0.9909492524224418
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: test
type: test
metrics:
- type: cosine_accuracy
value: 0.9592198581560284
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7969272136688232
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9591474245115454
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7969272136688232
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9574468085106383
name: Cosine Precision
- type: cosine_recall
value: 0.9608540925266904
name: Cosine Recall
- type: cosine_ap
value: 0.9877694290490489
name: Cosine Ap
- type: dot_accuracy
value: 0.9592198581560284
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.7969271540641785
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9591474245115454
name: Dot F1
- type: dot_f1_threshold
value: 0.7969271540641785
name: Dot F1 Threshold
- type: dot_precision
value: 0.9574468085106383
name: Dot Precision
- type: dot_recall
value: 0.9608540925266904
name: Dot Recall
- type: dot_ap
value: 0.9877694290490489
name: Dot Ap
- type: manhattan_accuracy
value: 0.9556737588652482
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.808526992797852
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9557522123893805
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.917011260986328
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.9507042253521126
name: Manhattan Precision
- type: manhattan_recall
value: 0.9608540925266904
name: Manhattan Recall
- type: manhattan_ap
value: 0.9866404317968996
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9592198581560284
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.6372953653335571
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9591474245115454
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6372953653335571
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9574468085106383
name: Euclidean Precision
- type: euclidean_recall
value: 0.9608540925266904
name: Euclidean Recall
- type: euclidean_ap
value: 0.9877694290490489
name: Euclidean Ap
- type: max_accuracy
value: 0.9592198581560284
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.808526992797852
name: Max Accuracy Threshold
- type: max_f1
value: 0.9591474245115454
name: Max F1
- type: max_f1_threshold
value: 9.917011260986328
name: Max F1 Threshold
- type: max_precision
value: 0.9574468085106383
name: Max Precision
- type: max_recall
value: 0.9608540925266904
name: Max Recall
- type: max_ap
value: 0.9877694290490489
name: Max Ap
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("overfitting-co/A2P-constrastive-all")
# Run inference
sentences = [
'Khaosan Road',
'Reserved',
'Adventurous',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.9574 |
| cosine_accuracy_threshold | 0.8163 |
| cosine_f1 | 0.958 |
| cosine_f1_threshold | 0.8131 |
| cosine_precision | 0.9682 |
| cosine_recall | 0.9481 |
| cosine_ap | 0.9909 |
| dot_accuracy | 0.9574 |
| dot_accuracy_threshold | 0.8163 |
| dot_f1 | 0.958 |
| dot_f1_threshold | 0.8131 |
| dot_precision | 0.9682 |
| dot_recall | 0.9481 |
| dot_ap | 0.9909 |
| manhattan_accuracy | 0.9609 |
| manhattan_accuracy_threshold | 9.5648 |
| manhattan_f1 | 0.9619 |
| manhattan_f1_threshold | 9.5648 |
| manhattan_precision | 0.9619 |
| manhattan_recall | 0.9619 |
| manhattan_ap | 0.9909 |
| euclidean_accuracy | 0.9574 |
| euclidean_accuracy_threshold | 0.6061 |
| euclidean_f1 | 0.958 |
| euclidean_f1_threshold | 0.6114 |
| euclidean_precision | 0.9682 |
| euclidean_recall | 0.9481 |
| euclidean_ap | 0.9909 |
| max_accuracy | 0.9609 |
| max_accuracy_threshold | 9.5648 |
| max_f1 | 0.9619 |
| max_f1_threshold | 9.5648 |
| max_precision | 0.9682 |
| max_recall | 0.9619 |
| **max_ap** | **0.9909** |
#### Binary Classification
* Dataset: `test`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.9592 |
| cosine_accuracy_threshold | 0.7969 |
| cosine_f1 | 0.9591 |
| cosine_f1_threshold | 0.7969 |
| cosine_precision | 0.9574 |
| cosine_recall | 0.9609 |
| cosine_ap | 0.9878 |
| dot_accuracy | 0.9592 |
| dot_accuracy_threshold | 0.7969 |
| dot_f1 | 0.9591 |
| dot_f1_threshold | 0.7969 |
| dot_precision | 0.9574 |
| dot_recall | 0.9609 |
| dot_ap | 0.9878 |
| manhattan_accuracy | 0.9557 |
| manhattan_accuracy_threshold | 9.8085 |
| manhattan_f1 | 0.9558 |
| manhattan_f1_threshold | 9.917 |
| manhattan_precision | 0.9507 |
| manhattan_recall | 0.9609 |
| manhattan_ap | 0.9866 |
| euclidean_accuracy | 0.9592 |
| euclidean_accuracy_threshold | 0.6373 |
| euclidean_f1 | 0.9591 |
| euclidean_f1_threshold | 0.6373 |
| euclidean_precision | 0.9574 |
| euclidean_recall | 0.9609 |
| euclidean_ap | 0.9878 |
| max_accuracy | 0.9592 |
| max_accuracy_threshold | 9.8085 |
| max_f1 | 0.9591 |
| max_f1_threshold | 9.917 |
| max_precision | 0.9574 |
| max_recall | 0.9609 |
| **max_ap** | **0.9878** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,505 training samples
* Columns: sentence_0
, sentence_1
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details |
N Seoul Tower
| Laid-back
| 0
|
| Magere Brug
| Romantic
| 1
|
| Polynesian Cultural Center
| Adventurous
| 1
|
* Loss: [OnlineContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters