File size: 1,871 Bytes
094469f
 
e9ad8d1
 
 
 
3c4e61f
 
 
 
 
 
cd6ea08
 
0f321d3
 
4988827
 
d2fb143
4988827
bbb935e
4988827
bbb935e
4988827
bbb935e
f69c6d2
bbb935e
ce090f5
4988827
 
 
 
 
 
bbb935e
4988827
bbb935e
4988827
bbb935e
4988827
 
0f321d3
4988827
 
 
e1dd574
4988827
0f321d3
4988827
0f321d3
4988827
0f321d3
022ceb4
0f321d3
133aeca
d2fb143
 
133aeca
 
 
 
 
 
 
 
 
 
 
 
 
 
3c4e61f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: other
language:
- en
tags:
- biology
- medical
- cancer
datasets:
- owkin/nct-crc-he
- owkin/camelyon16-features
pipeline_tag: feature-extraction
---

# Model Card for Phikon

---

Phikon is a self-supervised learning model for histopathology trained with iBOT. 

To learn more about how to use the model, we encourage you to read our blog post and view this Colab notebook.

### Model Description

- **Developed by:** Owkin
- **Funded by:** Owkin and IDRIS
- **Model type:** Vision Transformer
- **License:** [Owkin non-commercial license](https://github.com/owkin/HistoSSLscaling/blob/main/LICENSE.txt)


## Uses

### Direct Use

The primary use of the Phikon model can be used for feature extraction from histology image tiles. 

### Downstream Use 

The model can be used for cancer classification on a variety of cancer subtypes. The model can also be finetuned to specialise on cancer subtypes.


## Technical Specifications

### Compute Infrastructure

All the models we built were trained on the French Jean Zay cluster.

### Hardware

NVIDIA V100 GPUs with 32Gb RAM 

### Software

PyTorch 1.13.1

---

### BibTeX entry and citation info

```bibtex
@article{Filiot2023ScalingSSLforHistoWithMIM,
	author       = {Alexandre Filiot and Ridouane Ghermi and Antoine Olivier and Paul Jacob and Lucas Fidon and Alice Mac Kain and Charlie Saillard and Jean-Baptiste Schiratti},
	title        = {Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling},
	elocation-id = {2023.07.21.23292757},
	year         = {2023},
	doi          = {10.1101/2023.07.21.23292757},
	publisher    = {Cold Spring Harbor Laboratory Press},
	url          = {https://www.medrxiv.org/content/early/2023/07/26/2023.07.21.23292757},
	eprint       = {https://www.medrxiv.org/content/early/2023/07/26/2023.07.21.23292757.full.pdf},
	journal      = {medRxiv}
}
```