File size: 1,871 Bytes
094469f e9ad8d1 3c4e61f cd6ea08 0f321d3 4988827 d2fb143 4988827 bbb935e 4988827 bbb935e 4988827 bbb935e f69c6d2 bbb935e ce090f5 4988827 bbb935e 4988827 bbb935e 4988827 bbb935e 4988827 0f321d3 4988827 e1dd574 4988827 0f321d3 4988827 0f321d3 4988827 0f321d3 022ceb4 0f321d3 133aeca d2fb143 133aeca 3c4e61f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: other
language:
- en
tags:
- biology
- medical
- cancer
datasets:
- owkin/nct-crc-he
- owkin/camelyon16-features
pipeline_tag: feature-extraction
---
# Model Card for Phikon
---
Phikon is a self-supervised learning model for histopathology trained with iBOT.
To learn more about how to use the model, we encourage you to read our blog post and view this Colab notebook.
### Model Description
- **Developed by:** Owkin
- **Funded by:** Owkin and IDRIS
- **Model type:** Vision Transformer
- **License:** [Owkin non-commercial license](https://github.com/owkin/HistoSSLscaling/blob/main/LICENSE.txt)
## Uses
### Direct Use
The primary use of the Phikon model can be used for feature extraction from histology image tiles.
### Downstream Use
The model can be used for cancer classification on a variety of cancer subtypes. The model can also be finetuned to specialise on cancer subtypes.
## Technical Specifications
### Compute Infrastructure
All the models we built were trained on the French Jean Zay cluster.
### Hardware
NVIDIA V100 GPUs with 32Gb RAM
### Software
PyTorch 1.13.1
---
### BibTeX entry and citation info
```bibtex
@article{Filiot2023ScalingSSLforHistoWithMIM,
author = {Alexandre Filiot and Ridouane Ghermi and Antoine Olivier and Paul Jacob and Lucas Fidon and Alice Mac Kain and Charlie Saillard and Jean-Baptiste Schiratti},
title = {Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling},
elocation-id = {2023.07.21.23292757},
year = {2023},
doi = {10.1101/2023.07.21.23292757},
publisher = {Cold Spring Harbor Laboratory Press},
url = {https://www.medrxiv.org/content/early/2023/07/26/2023.07.21.23292757},
eprint = {https://www.medrxiv.org/content/early/2023/07/26/2023.07.21.23292757.full.pdf},
journal = {medRxiv}
}
``` |