--- library_name: transformers license: other base_model: google/mobilenet_v2_1.0_224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: mobilenet_v2_1.0_224-finetuned-plantdisease results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9777191259513872 --- # mobilenet_v2_1.0_224-finetuned-plantdisease This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0702 - Accuracy: 0.9777 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:--------:| | 0.3974 | 0.9996 | 1145 | 0.3599 | 0.8979 | | 0.2155 | 2.0 | 2291 | 0.1525 | 0.9603 | | 0.2058 | 2.9996 | 3436 | 0.1492 | 0.9559 | | 0.1524 | 4.0 | 4582 | 0.1025 | 0.9694 | | 0.1274 | 4.9996 | 5727 | 0.0928 | 0.9706 | | 0.1141 | 6.0 | 6873 | 0.0874 | 0.9723 | | 0.1275 | 6.9996 | 8018 | 0.1226 | 0.9620 | | 0.1323 | 8.0 | 9164 | 0.0702 | 0.9777 | | 0.1212 | 8.9996 | 10309 | 0.1257 | 0.9607 | | 0.0981 | 9.9956 | 11450 | 0.0750 | 0.9751 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1