|
import torch |
|
from datasets import load_dataset |
|
import evaluate |
|
from transformers import EfficientNetImageProcessor, EfficientNetForImageClassification, TrainingArguments, Trainer |
|
import numpy as np |
|
|
|
print("Cuda availability:", torch.cuda.is_available()) |
|
cuda = torch.device('cuda') |
|
print("cuda: ", torch.cuda.get_device_name(device=cuda)) |
|
|
|
dataset = load_dataset("chriamue/bird-species-dataset") |
|
|
|
model_name = "google/efficientnet-b2" |
|
finetuned_model_name = "chriamue/bird-species-classifier" |
|
|
|
|
|
labels = dataset["train"].features["label"].names |
|
label2id, id2label = dict(), dict() |
|
for i, label in enumerate(labels): |
|
label2id[label] = str(i) |
|
id2label[str(i)] = label |
|
|
|
preprocessor = EfficientNetImageProcessor.from_pretrained(model_name) |
|
model = EfficientNetForImageClassification.from_pretrained(model_name, num_labels=len( |
|
labels), id2label=id2label, label2id=label2id, ignore_mismatched_sizes=True) |
|
|
|
|
|
training_args = TrainingArguments( |
|
finetuned_model_name, remove_unused_columns=False, |
|
evaluation_strategy="epoch", |
|
save_strategy="epoch", |
|
learning_rate=5e-5, |
|
per_device_train_batch_size=32, |
|
per_device_eval_batch_size=16, |
|
num_train_epochs=1, |
|
weight_decay=0.01, |
|
load_best_model_at_end=True, |
|
metric_for_best_model="accuracy" |
|
) |
|
|
|
metric = evaluate.load("accuracy") |
|
|
|
|
|
def compute_metrics(eval_pred): |
|
predictions, labels = eval_pred |
|
predictions = np.argmax(predictions, axis=1) |
|
return metric.compute(predictions=predictions, references=labels) |
|
|
|
|
|
def transforms(examples): |
|
pixel_values = [preprocessor(image, return_tensors="pt").pixel_values.squeeze( |
|
0) for image in examples["image"]] |
|
examples["pixel_values"] = pixel_values |
|
return examples |
|
|
|
|
|
image = dataset["train"][0]["image"] |
|
|
|
dataset["train"] = dataset["train"].shuffle(seed=42).select(range(1500)) |
|
|
|
|
|
|
|
dataset = dataset.map(transforms, remove_columns=["image"], batched=True) |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=dataset["train"], |
|
eval_dataset=dataset["validation"], |
|
compute_metrics=compute_metrics, |
|
) |
|
|
|
train_results = trainer.train(resume_from_checkpoint=True) |
|
|
|
print(trainer.evaluate()) |
|
|
|
trainer.save_model() |
|
trainer.log_metrics("train", train_results.metrics) |
|
trainer.save_metrics("train", train_results.metrics) |
|
trainer.save_state() |
|
|
|
dummy_input = torch.randn(1, 3, 224, 224) |
|
model = model.to('cpu') |
|
output_onnx_path = 'model.onnx' |
|
torch.onnx.export(model, dummy_input, output_onnx_path, opset_version=13) |
|
|
|
inputs = preprocessor(image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
logits = model(**inputs).logits |
|
predicted_label = logits.argmax(-1).item() |
|
print(labels[predicted_label]) |
|
|