adds train script
Browse files
train.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from datasets import load_dataset
|
3 |
+
import evaluate
|
4 |
+
from transformers import EfficientNetImageProcessor, EfficientNetForImageClassification, TrainingArguments, Trainer
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
print("Cuda availability:", torch.cuda.is_available())
|
8 |
+
cuda = torch.device('cuda') # Default HIP device
|
9 |
+
print("cuda: ", torch.cuda.get_device_name(device=cuda))
|
10 |
+
|
11 |
+
dataset = load_dataset("chriamue/bird-species-dataset")
|
12 |
+
|
13 |
+
model_name = "google/efficientnet-b2"
|
14 |
+
finetuned_model_name = "chriamue/bird-species-classifier"
|
15 |
+
|
16 |
+
#####
|
17 |
+
labels = dataset["train"].features["label"].names
|
18 |
+
label2id, id2label = dict(), dict()
|
19 |
+
for i, label in enumerate(labels):
|
20 |
+
label2id[label] = str(i)
|
21 |
+
id2label[str(i)] = label
|
22 |
+
|
23 |
+
preprocessor = EfficientNetImageProcessor.from_pretrained(model_name)
|
24 |
+
model = EfficientNetForImageClassification.from_pretrained(model_name, num_labels=len(
|
25 |
+
labels), id2label=id2label, label2id=label2id, ignore_mismatched_sizes=True)
|
26 |
+
|
27 |
+
|
28 |
+
training_args = TrainingArguments(
|
29 |
+
finetuned_model_name, remove_unused_columns=False,
|
30 |
+
evaluation_strategy="epoch",
|
31 |
+
save_strategy="epoch",
|
32 |
+
learning_rate=5e-5,
|
33 |
+
per_device_train_batch_size=32,
|
34 |
+
per_device_eval_batch_size=16,
|
35 |
+
num_train_epochs=1,
|
36 |
+
weight_decay=0.01,
|
37 |
+
load_best_model_at_end=True,
|
38 |
+
metric_for_best_model="accuracy"
|
39 |
+
)
|
40 |
+
|
41 |
+
metric = evaluate.load("accuracy")
|
42 |
+
|
43 |
+
|
44 |
+
def compute_metrics(eval_pred):
|
45 |
+
predictions, labels = eval_pred
|
46 |
+
predictions = np.argmax(predictions, axis=1)
|
47 |
+
return metric.compute(predictions=predictions, references=labels)
|
48 |
+
|
49 |
+
|
50 |
+
def transforms(examples):
|
51 |
+
pixel_values = [preprocessor(image, return_tensors="pt").pixel_values.squeeze(
|
52 |
+
0) for image in examples["image"]]
|
53 |
+
examples["pixel_values"] = pixel_values
|
54 |
+
return examples
|
55 |
+
|
56 |
+
|
57 |
+
image = dataset["train"][0]["image"]
|
58 |
+
|
59 |
+
dataset["train"] = dataset["train"].shuffle(seed=42).select(range(1500))
|
60 |
+
# dataset["validation"] = dataset["validation"].select(range(100))
|
61 |
+
# dataset["test"] = dataset["test"].select(range(100))
|
62 |
+
|
63 |
+
dataset = dataset.map(transforms, remove_columns=["image"], batched=True)
|
64 |
+
|
65 |
+
trainer = Trainer(
|
66 |
+
model=model,
|
67 |
+
args=training_args,
|
68 |
+
train_dataset=dataset["train"],
|
69 |
+
eval_dataset=dataset["validation"],
|
70 |
+
compute_metrics=compute_metrics,
|
71 |
+
)
|
72 |
+
|
73 |
+
train_results = trainer.train(resume_from_checkpoint=True)
|
74 |
+
|
75 |
+
trainer.evaluate()
|
76 |
+
|
77 |
+
# trainer.save_model("test_trainer")
|
78 |
+
|
79 |
+
# trainer.save_model()
|
80 |
+
trainer.log_metrics("train", train_results.metrics)
|
81 |
+
# trainer.save_metrics("train", train_results.metrics)
|
82 |
+
# trainer.save_state()
|
83 |
+
|
84 |
+
dummy_input = torch.randn(1, 3, 224, 224)
|
85 |
+
model = model.to('cpu')
|
86 |
+
output_onnx_path = 'model.onnx'
|
87 |
+
torch.onnx.export(model, dummy_input, output_onnx_path, export_params=True, opset_version=13, do_constant_folding=True, input_names=['input'], output_names=['output'], dynamic_axes={'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}})
|
88 |
+
|
89 |
+
|
90 |
+
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
91 |
+
#model = model.to(device)
|
92 |
+
|
93 |
+
inputs = preprocessor(image, return_tensors="pt")
|
94 |
+
#inputs = {k: v.to(device) for k, v in inputs.items()}
|
95 |
+
|
96 |
+
with torch.no_grad():
|
97 |
+
logits = model(**inputs).logits
|
98 |
+
predicted_label = logits.argmax(-1).item()
|
99 |
+
print(labels[predicted_label])
|
100 |
+
|