Upload 2 files
Browse files- image_processor_mle.py +443 -0
- modeling_mle.py +8 -5
image_processor_mle.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# copied from ViTImageProcessor (https://github.com/huggingface/transformers/blob/v4.37.2/src/transformers/models/vit/image_processing_vit.py)
|
2 |
+
|
3 |
+
"""Image processor class for WD v14 Tagger."""
|
4 |
+
|
5 |
+
from typing import Optional, List, Dict, Union, Tuple
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import cv2
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
from transformers.image_processing_utils import (
|
12 |
+
BaseImageProcessor,
|
13 |
+
BatchFeature,
|
14 |
+
get_size_dict,
|
15 |
+
)
|
16 |
+
from transformers.image_transforms import (
|
17 |
+
rescale,
|
18 |
+
to_channel_dimension_format,
|
19 |
+
_rescale_for_pil_conversion,
|
20 |
+
to_pil_image,
|
21 |
+
)
|
22 |
+
from transformers.image_utils import (
|
23 |
+
IMAGENET_STANDARD_MEAN,
|
24 |
+
IMAGENET_STANDARD_STD,
|
25 |
+
ChannelDimension,
|
26 |
+
ImageInput,
|
27 |
+
PILImageResampling,
|
28 |
+
infer_channel_dimension_format,
|
29 |
+
is_scaled_image,
|
30 |
+
make_list_of_images,
|
31 |
+
to_numpy_array,
|
32 |
+
valid_images,
|
33 |
+
)
|
34 |
+
from transformers.utils import TensorType, logging
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
def resize_by_factor(
|
40 |
+
image: np.ndarray,
|
41 |
+
resize_factor: int,
|
42 |
+
resample: PILImageResampling = None,
|
43 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
44 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
45 |
+
return_numpy: bool = True,
|
46 |
+
):
|
47 |
+
"""
|
48 |
+
Resizes `image` to `(height, width)` specified by `size` using the PIL library.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
image (`np.ndarray`):
|
52 |
+
The image to resize.
|
53 |
+
resize_factor (`int`):
|
54 |
+
Value for padding the image to a multiple of the factor.
|
55 |
+
resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
56 |
+
The filter to user for resampling.
|
57 |
+
data_format (`ChannelDimension`, *optional*):
|
58 |
+
The channel dimension format of the output image. If unset, will use the inferred format from the input.
|
59 |
+
return_numpy (`bool`, *optional*, defaults to `True`):
|
60 |
+
Whether or not to return the resized image as a numpy array. If False a `PIL.Image.Image` object is
|
61 |
+
returned.
|
62 |
+
input_data_format (`ChannelDimension`, *optional*):
|
63 |
+
The channel dimension format of the input image. If unset, will use the inferred format from the input.
|
64 |
+
|
65 |
+
Returns:
|
66 |
+
`np.ndarray`: The resized image.
|
67 |
+
"""
|
68 |
+
|
69 |
+
resample = resample if resample is not None else PILImageResampling.BILINEAR
|
70 |
+
|
71 |
+
# For all transformations, we want to keep the same data format as the input image unless otherwise specified.
|
72 |
+
# The resized image from PIL will always have channels last, so find the input format first.
|
73 |
+
if input_data_format is None:
|
74 |
+
input_data_format = infer_channel_dimension_format(image)
|
75 |
+
data_format = input_data_format if data_format is None else data_format
|
76 |
+
|
77 |
+
# To maintain backwards compatibility with the resizing done in previous image feature extractors, we use
|
78 |
+
# the pillow library to resize the image and then convert back to numpy
|
79 |
+
do_rescale = False
|
80 |
+
if not isinstance(image, Image.Image):
|
81 |
+
do_rescale = _rescale_for_pil_conversion(image)
|
82 |
+
image = to_pil_image(
|
83 |
+
image, do_rescale=do_rescale, input_data_format=input_data_format
|
84 |
+
)
|
85 |
+
|
86 |
+
assert isinstance(image, Image.Image)
|
87 |
+
|
88 |
+
width, height = (
|
89 |
+
int(np.ceil(image.size[0] // resize_factor) * resize_factor),
|
90 |
+
int(np.ceil(image.size[1] // resize_factor) * resize_factor),
|
91 |
+
)
|
92 |
+
# solid image
|
93 |
+
new_image = Image.new(image.mode, (width, height), "white")
|
94 |
+
|
95 |
+
# paste original image on top left
|
96 |
+
new_image.paste(image)
|
97 |
+
|
98 |
+
if return_numpy:
|
99 |
+
new_image = np.array(new_image)
|
100 |
+
# If the input image channel dimension was of size 1, then it is dropped when converting to a PIL image
|
101 |
+
# so we need to add it back if necessary.
|
102 |
+
new_image = (
|
103 |
+
np.expand_dims(new_image, axis=-1) if new_image.ndim == 2 else new_image
|
104 |
+
)
|
105 |
+
# The image is always in channels last format after converting from a PIL image
|
106 |
+
new_image = to_channel_dimension_format(
|
107 |
+
new_image, data_format, input_channel_dim=ChannelDimension.LAST
|
108 |
+
)
|
109 |
+
# If an image was rescaled to be in the range [0, 255] before converting to a PIL image, then we need to
|
110 |
+
# rescale it back to the original range.
|
111 |
+
new_image = rescale(new_image, 1 / 255) if do_rescale else new_image
|
112 |
+
|
113 |
+
return new_image
|
114 |
+
|
115 |
+
|
116 |
+
def greyscale(
|
117 |
+
image: np.ndarray,
|
118 |
+
data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST,
|
119 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST,
|
120 |
+
return_numpy: bool = True,
|
121 |
+
):
|
122 |
+
"""
|
123 |
+
Convert `image` to `greyscale` using the PIL library.
|
124 |
+
|
125 |
+
Args:
|
126 |
+
image (`np.ndarray`):
|
127 |
+
The image to greyscale.
|
128 |
+
Returns:
|
129 |
+
`np.ndarray`: The greyscaled image.
|
130 |
+
"""
|
131 |
+
|
132 |
+
if not isinstance(image, Image.Image):
|
133 |
+
do_rescale = _rescale_for_pil_conversion(image)
|
134 |
+
image = to_pil_image(
|
135 |
+
image, do_rescale=do_rescale, input_data_format=input_data_format
|
136 |
+
)
|
137 |
+
|
138 |
+
assert isinstance(image, Image.Image)
|
139 |
+
|
140 |
+
# do greyscale
|
141 |
+
image = image.convert("L")
|
142 |
+
|
143 |
+
if return_numpy:
|
144 |
+
image = np.array(image)
|
145 |
+
|
146 |
+
# If the input image channel dimension was of size 1, then it is dropped when converting to a PIL image
|
147 |
+
# so we need to add it back if necessary.
|
148 |
+
image = np.expand_dims(image, axis=-1) if image.ndim == 2 else image
|
149 |
+
|
150 |
+
# The image is always in channels last format after converting from a PIL image
|
151 |
+
image = to_channel_dimension_format(
|
152 |
+
image, data_format, input_channel_dim=ChannelDimension.LAST
|
153 |
+
)
|
154 |
+
# If an image was rescaled to be in the range [0, 255] before converting to a PIL image, then we need to
|
155 |
+
# rescale it back to the original range.
|
156 |
+
image = rescale(image, 1 / 255) if do_rescale else image
|
157 |
+
|
158 |
+
return image
|
159 |
+
|
160 |
+
|
161 |
+
class MLEImageProcessor(BaseImageProcessor):
|
162 |
+
r"""
|
163 |
+
Constructs a MLE image processor.
|
164 |
+
|
165 |
+
Args:
|
166 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
167 |
+
Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
|
168 |
+
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
|
169 |
+
resize_factor (`int`, *optional*, defaults to `16`):
|
170 |
+
Value for padding the image to a multiple of the factor.
|
171 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
|
172 |
+
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
|
173 |
+
`preprocess` method.
|
174 |
+
do_rescale (`bool`, *optional*, defaults to `False`):
|
175 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
|
176 |
+
parameter in the `preprocess` method.
|
177 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
178 |
+
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
|
179 |
+
`preprocess` method.
|
180 |
+
do_normalize (`bool`, *optional*, defaults to `False`):
|
181 |
+
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
|
182 |
+
method.
|
183 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
184 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
185 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
186 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
187 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
188 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
189 |
+
"""
|
190 |
+
|
191 |
+
model_input_names = ["pixel_values"]
|
192 |
+
|
193 |
+
def __init__(
|
194 |
+
self,
|
195 |
+
do_resize: bool = True,
|
196 |
+
resize_factor: int = 16,
|
197 |
+
do_greyscale: bool = True,
|
198 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
199 |
+
do_rescale: bool = True,
|
200 |
+
rescale_factor: Union[int, float] = 1.0,
|
201 |
+
do_normalize: bool = False,
|
202 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
203 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
204 |
+
**kwargs,
|
205 |
+
) -> None:
|
206 |
+
super().__init__(**kwargs)
|
207 |
+
self.do_resize = do_resize
|
208 |
+
self.resize_factor = resize_factor
|
209 |
+
self.do_greyscale = do_greyscale
|
210 |
+
self.do_rescale = do_rescale
|
211 |
+
self.do_normalize = do_normalize
|
212 |
+
self.resample = resample
|
213 |
+
self.rescale_factor = rescale_factor
|
214 |
+
self.image_mean = (
|
215 |
+
image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN[0]
|
216 |
+
)
|
217 |
+
self.image_std = (
|
218 |
+
image_std if image_std is not None else IMAGENET_STANDARD_STD[0]
|
219 |
+
)
|
220 |
+
|
221 |
+
def resize(
|
222 |
+
self,
|
223 |
+
image: np.ndarray,
|
224 |
+
resize_factor: int,
|
225 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
226 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
227 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
228 |
+
**kwargs,
|
229 |
+
) -> np.ndarray:
|
230 |
+
"""
|
231 |
+
Resize an image to `(size["height"], size["width"])`.
|
232 |
+
|
233 |
+
Args:
|
234 |
+
image (`np.ndarray`):
|
235 |
+
Image to resize.
|
236 |
+
resize_factor (`int`):
|
237 |
+
Value for padding the image to a multiple of the factor.
|
238 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
239 |
+
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
|
240 |
+
data_format (`ChannelDimension` or `str`, *optional*):
|
241 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
242 |
+
image is used. Can be one of:
|
243 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
244 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
245 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
246 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
247 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
248 |
+
from the input image. Can be one of:
|
249 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
250 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
251 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
252 |
+
|
253 |
+
Returns:
|
254 |
+
`np.ndarray`: The resized image.
|
255 |
+
"""
|
256 |
+
|
257 |
+
return resize_by_factor(
|
258 |
+
image,
|
259 |
+
resize_factor=resize_factor,
|
260 |
+
resample=resample,
|
261 |
+
data_format=data_format,
|
262 |
+
input_data_format=input_data_format,
|
263 |
+
**kwargs,
|
264 |
+
)
|
265 |
+
|
266 |
+
def greyscale(
|
267 |
+
self,
|
268 |
+
image: np.ndarray,
|
269 |
+
data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST,
|
270 |
+
input_data_format: Optional[
|
271 |
+
Union[str, ChannelDimension]
|
272 |
+
] = ChannelDimension.FIRST,
|
273 |
+
**kwargs,
|
274 |
+
):
|
275 |
+
"""
|
276 |
+
Convert an image to greyscale.
|
277 |
+
|
278 |
+
Args:
|
279 |
+
image (`np.ndarray`):
|
280 |
+
Image to greyscale
|
281 |
+
|
282 |
+
Returns:
|
283 |
+
`np.ndarray`: The greyscaled image.
|
284 |
+
"""
|
285 |
+
|
286 |
+
return greyscale(
|
287 |
+
image,
|
288 |
+
data_format=data_format,
|
289 |
+
input_data_format=input_data_format,
|
290 |
+
**kwargs,
|
291 |
+
)
|
292 |
+
|
293 |
+
def preprocess(
|
294 |
+
self,
|
295 |
+
images: ImageInput,
|
296 |
+
do_resize: Optional[bool] = None,
|
297 |
+
resize_factor: Optional[int] = None,
|
298 |
+
do_greyscale: Optional[bool] = None,
|
299 |
+
resample: PILImageResampling = None,
|
300 |
+
do_rescale: Optional[bool] = None,
|
301 |
+
rescale_factor: Optional[float] = None,
|
302 |
+
do_normalize: Optional[bool] = None,
|
303 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
304 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
305 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
306 |
+
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
|
307 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
308 |
+
**kwargs,
|
309 |
+
):
|
310 |
+
"""
|
311 |
+
Preprocess an image or batch of images.
|
312 |
+
|
313 |
+
Args:
|
314 |
+
images (`ImageInput`):
|
315 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
316 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
317 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
318 |
+
Whether to resize the image.
|
319 |
+
resize_factor (`int`, *optional*, defaults to `self.resize_factor`):
|
320 |
+
Value for padding the image to a multiple of the factor.
|
321 |
+
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
|
322 |
+
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
|
323 |
+
an effect if `do_resize` is set to `True`.
|
324 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
325 |
+
Whether to rescale the image values between [0 - 1].
|
326 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
327 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
328 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
329 |
+
Whether to normalize the image.
|
330 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
331 |
+
The type of tensors to return. Can be one of:
|
332 |
+
- Unset: Return a list of `np.ndarray`.
|
333 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
334 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
335 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
336 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
337 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
338 |
+
The channel dimension format for the output image. Can be one of:
|
339 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
340 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
341 |
+
- Unset: Use the channel dimension format of the input image.
|
342 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
343 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
344 |
+
from the input image. Can be one of:
|
345 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
346 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
347 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
348 |
+
"""
|
349 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
350 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
351 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
352 |
+
do_greyscale = do_greyscale if do_greyscale is not None else self.do_greyscale
|
353 |
+
resample = resample if resample is not None else self.resample
|
354 |
+
rescale_factor = (
|
355 |
+
rescale_factor if rescale_factor is not None else self.rescale_factor
|
356 |
+
)
|
357 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
358 |
+
image_std = image_std if image_std is not None else self.image_std
|
359 |
+
|
360 |
+
resize_factor = (
|
361 |
+
resize_factor if resize_factor is not None else self.resize_factor
|
362 |
+
)
|
363 |
+
|
364 |
+
images = make_list_of_images(images)
|
365 |
+
|
366 |
+
if not valid_images(images):
|
367 |
+
raise ValueError(
|
368 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
369 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
370 |
+
)
|
371 |
+
|
372 |
+
if do_resize and resize_factor is None:
|
373 |
+
raise ValueError("Resize factor must be specified if do_resize is True.")
|
374 |
+
|
375 |
+
if do_rescale and rescale_factor is None:
|
376 |
+
raise ValueError("Rescale factor must be specified if do_rescale is True.")
|
377 |
+
|
378 |
+
# All transformations expect numpy arrays.
|
379 |
+
images = [to_numpy_array(image) for image in images]
|
380 |
+
|
381 |
+
if is_scaled_image(images[0]) and do_rescale:
|
382 |
+
logger.warning_once(
|
383 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
384 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
385 |
+
)
|
386 |
+
|
387 |
+
if input_data_format is None:
|
388 |
+
# We assume that all images have the same channel dimension format.
|
389 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
390 |
+
|
391 |
+
if do_resize:
|
392 |
+
images = [
|
393 |
+
self.resize(
|
394 |
+
image=image,
|
395 |
+
resize_factor=resize_factor,
|
396 |
+
resample=resample,
|
397 |
+
input_data_format=input_data_format,
|
398 |
+
)
|
399 |
+
for image in images
|
400 |
+
]
|
401 |
+
|
402 |
+
if do_greyscale:
|
403 |
+
images = [
|
404 |
+
self.greyscale(
|
405 |
+
image=image,
|
406 |
+
data_format=data_format,
|
407 |
+
input_data_format=input_data_format,
|
408 |
+
)
|
409 |
+
for image in images
|
410 |
+
]
|
411 |
+
# the channel would be set to 1, so input data format could't be estimated
|
412 |
+
input_data_format = ChannelDimension.FIRST
|
413 |
+
|
414 |
+
if do_rescale:
|
415 |
+
images = [
|
416 |
+
self.rescale(
|
417 |
+
image=image,
|
418 |
+
scale=rescale_factor,
|
419 |
+
input_data_format=input_data_format,
|
420 |
+
)
|
421 |
+
for image in images
|
422 |
+
]
|
423 |
+
|
424 |
+
if do_normalize:
|
425 |
+
images = [
|
426 |
+
self.normalize(
|
427 |
+
image=image,
|
428 |
+
mean=image_mean,
|
429 |
+
std=image_std,
|
430 |
+
input_data_format=input_data_format,
|
431 |
+
)
|
432 |
+
for image in images
|
433 |
+
]
|
434 |
+
|
435 |
+
images = [
|
436 |
+
to_channel_dimension_format(
|
437 |
+
image, data_format, input_channel_dim=input_data_format
|
438 |
+
)
|
439 |
+
for image in images
|
440 |
+
]
|
441 |
+
|
442 |
+
data = {"pixel_values": images}
|
443 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
modeling_mle.py
CHANGED
@@ -391,23 +391,26 @@ class MLEForAnimeLineExtraction(MLEPretrainedModel):
|
|
391 |
|
392 |
self.model = MLEModel(config)
|
393 |
|
394 |
-
def postprocess(self, output_tensor: torch.Tensor, input_shape:
|
395 |
-
pixel_values = output_tensor[
|
396 |
pixel_values = torch.clip(pixel_values, 0, 255)
|
397 |
|
398 |
-
pixel_values = pixel_values[0 : input_shape[
|
399 |
return pixel_values
|
400 |
|
401 |
def forward(
|
402 |
self, pixel_values: torch.Tensor, return_dict: bool = True
|
403 |
) -> tuple[torch.Tensor, ...] | MLEForAnimeLineExtractionOutput:
|
|
|
|
|
|
|
404 |
model_output = self.model(pixel_values)
|
405 |
|
406 |
if not return_dict:
|
407 |
-
return (model_output, self.postprocess(model_output,
|
408 |
|
409 |
else:
|
410 |
return MLEForAnimeLineExtractionOutput(
|
411 |
last_hidden_state=model_output,
|
412 |
-
pixel_values=self.postprocess(model_output,
|
413 |
)
|
|
|
391 |
|
392 |
self.model = MLEModel(config)
|
393 |
|
394 |
+
def postprocess(self, output_tensor: torch.Tensor, input_shape: tuple[int, int]):
|
395 |
+
pixel_values = output_tensor[:, 0, :, :]
|
396 |
pixel_values = torch.clip(pixel_values, 0, 255)
|
397 |
|
398 |
+
pixel_values = pixel_values[:, 0 : input_shape[0], 0 : input_shape[1]]
|
399 |
return pixel_values
|
400 |
|
401 |
def forward(
|
402 |
self, pixel_values: torch.Tensor, return_dict: bool = True
|
403 |
) -> tuple[torch.Tensor, ...] | MLEForAnimeLineExtractionOutput:
|
404 |
+
# height, width
|
405 |
+
input_image_size = (pixel_values.shape[2], pixel_values.shape[3])
|
406 |
+
|
407 |
model_output = self.model(pixel_values)
|
408 |
|
409 |
if not return_dict:
|
410 |
+
return (model_output, self.postprocess(model_output, input_image_size))
|
411 |
|
412 |
else:
|
413 |
return MLEForAnimeLineExtractionOutput(
|
414 |
last_hidden_state=model_output,
|
415 |
+
pixel_values=self.postprocess(model_output, input_image_size),
|
416 |
)
|